You will find below the list of publications of all the members of the Peptides, Glycoconjugates and Metals in Biology research pole. For individual or theme-specific publications, please consult the research or the personal pages via the members list using the sidebar navigation tool.
2022 |
Improvement of Peptidyl Copper Complexes Mimicking Catalase: A Subtle Balance between Thermodynamic Stability and Resistance towards H2O2 Degradation Article de journal Yaqine Ben Hadj Hammouda; Koudedja Coulibaly; Alimatou Bathily; Magdalene Teoh Sook Han; Clotilde Policar; Nicolas Delsuc Molecules, 27 (17), 2022, ISSN: 1420-3049. @article{molecules27175476, title = {Improvement of Peptidyl Copper Complexes Mimicking Catalase: A Subtle Balance between Thermodynamic Stability and Resistance towards H2O2 Degradation}, author = {Yaqine Ben Hadj Hammouda and Koudedja Coulibaly and Alimatou Bathily and Magdalene Teoh Sook Han and Clotilde Policar and Nicolas Delsuc}, url = {https://www.mdpi.com/1420-3049/27/17/5476}, doi = {10.3390/molecules27175476}, issn = {1420-3049}, year = {2022}, date = {2022-01-01}, journal = {Molecules}, volume = {27}, number = {17}, abstract = {Catalase mimics are low molecular weight metal complexes that reproduce the activity of catalase, an antioxidant metalloprotein that participates in the cellular regulation of H2O2 concentration by catalyzing its dismutation. H2O2 is a reactive oxygen species that is vital for the normal functioning of cells. However, its overproduction contributes to oxidative stress, which damages cells. Owing to their biocompatibility, peptidyl complexes are an attractive option for clinical applications to regulate H2O2 by enzyme mimics. We report here the synthesis and characterization of four new peptidyl di-copper complexes bearing two coordinating sequences. Characterization of the complexes showed that, depending on the linker used between the two coordinating sequences, their catalytic activity for H2O2 dismutation, their thermodynamic stability and their resistance to H2O2 degradation are very different, with (CATm2)Cu2 being the most promising catalyst.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Catalase mimics are low molecular weight metal complexes that reproduce the activity of catalase, an antioxidant metalloprotein that participates in the cellular regulation of H2O2 concentration by catalyzing its dismutation. H2O2 is a reactive oxygen species that is vital for the normal functioning of cells. However, its overproduction contributes to oxidative stress, which damages cells. Owing to their biocompatibility, peptidyl complexes are an attractive option for clinical applications to regulate H2O2 by enzyme mimics. We report here the synthesis and characterization of four new peptidyl di-copper complexes bearing two coordinating sequences. Characterization of the complexes showed that, depending on the linker used between the two coordinating sequences, their catalytic activity for H2O2 dismutation, their thermodynamic stability and their resistance to H2O2 degradation are very different, with (CATm2)Cu2 being the most promising catalyst. |
Deciphering the Metal Speciation in Low-Molecular-Weight Complexes by IMS-MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates Article de journal Martha Zoumpoulaki; Gabrielle Schanne; Nicolas Delsuc; Hugues Preud'homme; Elodie Quévrain; Nicolas Eskenazi; Géraldine Gazzah; Regis Guillot; Philippe Seksik; Joelle Vinh; Ryszard Lobinski; Clotilde Policar Angewandte Chemie International Edition, n/a (n/a), p. e202203066, 2022. @article{https://doi.org/10.1002/anie.202203066, title = {Deciphering the Metal Speciation in Low-Molecular-Weight Complexes by IMS-MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates}, author = {Martha Zoumpoulaki and Gabrielle Schanne and Nicolas Delsuc and Hugues Preud'homme and Elodie Qu\'{e}vrain and Nicolas Eskenazi and G\'{e}raldine Gazzah and Regis Guillot and Philippe Seksik and Joelle Vinh and Ryszard Lobinski and Clotilde Policar}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202203066}, doi = {https://doi.org/10.1002/anie.202203066}, year = {2022}, date = {2022-01-01}, journal = {Angewandte Chemie International Edition}, volume = {n/a}, number = {n/a}, pages = {e202203066}, abstract = {Abstract The detection and quantification of exogenous metal complexes are crucial to understanding their activity in intricate biological media. MnII complexes are difficult to detect and quantify because of low association constants, and high lability. The superoxide dismutase (SOD) mimic (or mimetic) labelled Mn1 is based on a 1,2-di-aminoethane functionalized with imidazole and phenolate and has good intrinsic anti-superoxide, antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-activated intestinal epithelial HT29-MD2 cells, similar to that of its propylated analogue labelled Mn1P. Ion mobility spectrometry-mass spectrometry (IMS-MS) is a powerful technique for separating low molecular weight (LMW) metal complexes and can even separate complexes with the same ligand but bound to different divalent metal cations with similar ionic radii. We demonstrated the intracellular presence of the Mn1 and Mn1P complexes, at least partly intact, in lysates of cells incubated with the complexes and estimated the intracellular Mn1P concentration using a Co-13C6 analogue.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Abstract The detection and quantification of exogenous metal complexes are crucial to understanding their activity in intricate biological media. MnII complexes are difficult to detect and quantify because of low association constants, and high lability. The superoxide dismutase (SOD) mimic (or mimetic) labelled Mn1 is based on a 1,2-di-aminoethane functionalized with imidazole and phenolate and has good intrinsic anti-superoxide, antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-activated intestinal epithelial HT29-MD2 cells, similar to that of its propylated analogue labelled Mn1P. Ion mobility spectrometry-mass spectrometry (IMS-MS) is a powerful technique for separating low molecular weight (LMW) metal complexes and can even separate complexes with the same ligand but bound to different divalent metal cations with similar ionic radii. We demonstrated the intracellular presence of the Mn1 and Mn1P complexes, at least partly intact, in lysates of cells incubated with the complexes and estimated the intracellular Mn1P concentration using a Co-13C6 analogue. |
Cellular Detection of a Mitochondria Targeted Brominated Vinyl Triphenylamine Optical Probe (TP−Br) by X-Ray Fluorescence Microscopy Article de journal Sounderya Nagarajan; Florent Poyer; Laura Fourmois; Delphine Naud-Martin; Kadda Medjoubi; Andrea Somogyi; Gabrielle Schanne; Lucas Henry; Nicolas Delsuc; Clotilde Policar; Helene C Bertrand; Florence Mahuteau-Betzer Chemistry – A European Journal, 28 (15), p. e202104424, 2022. @article{https://doi.org/10.1002/chem.202104424, title = {Cellular Detection of a Mitochondria Targeted Brominated Vinyl Triphenylamine Optical Probe (TP−Br) by X-Ray Fluorescence Microscopy}, author = {Sounderya Nagarajan and Florent Poyer and Laura Fourmois and Delphine Naud-Martin and Kadda Medjoubi and Andrea Somogyi and Gabrielle Schanne and Lucas Henry and Nicolas Delsuc and Clotilde Policar and Helene C Bertrand and Florence Mahuteau-Betzer}, url = {https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.202104424}, doi = {https://doi.org/10.1002/chem.202104424}, year = {2022}, date = {2022-01-01}, journal = {Chemistry \textendash A European Journal}, volume = {28}, number = {15}, pages = {e202104424}, abstract = {Abstract Triphenylamine (TP) derivatives such as two-branch cationic vinylbenzimidazolium triphenylamine TP−2Bzim are promising turn-on fluorescent probes suitable for two-photon imaging, labelling mitochondria in live cells. Here, we designed two TP−2Bzim derivatives as bimodal probes suitable for X-ray fluorescence imaging. The conjugation of the TP core with a rhenium tricarbonyl moiety in the TP−RePyta probe altered the localisation in live cells from mitochondria to lysosomes. The introduction of bromine on the TP core generated the TP−Br probe retaining good photophysical properties and mitochondria labelling in live cells. The influence of calcium channels in the uptake of TP−Br was studied. Synchrotron Radiation X-ray Fluorescence (SXRF) imaging of bromine enabled the detection of TP−Br and suggested a negligible presence of the probe in an unbound state in the incubated cells, a crucial point in the development of these probes. This study paves the way towards the development of TP probes as specific organelle stainers suitable for SXRF imaging.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Abstract Triphenylamine (TP) derivatives such as two-branch cationic vinylbenzimidazolium triphenylamine TP−2Bzim are promising turn-on fluorescent probes suitable for two-photon imaging, labelling mitochondria in live cells. Here, we designed two TP−2Bzim derivatives as bimodal probes suitable for X-ray fluorescence imaging. The conjugation of the TP core with a rhenium tricarbonyl moiety in the TP−RePyta probe altered the localisation in live cells from mitochondria to lysosomes. The introduction of bromine on the TP core generated the TP−Br probe retaining good photophysical properties and mitochondria labelling in live cells. The influence of calcium channels in the uptake of TP−Br was studied. Synchrotron Radiation X-ray Fluorescence (SXRF) imaging of bromine enabled the detection of TP−Br and suggested a negligible presence of the probe in an unbound state in the incubated cells, a crucial point in the development of these probes. This study paves the way towards the development of TP probes as specific organelle stainers suitable for SXRF imaging. |
SOD mimics: From the tool box of the chemists to cellular studies Article de journal Clotilde Policar; Jean Bouvet; Hélène C Bertrand; Nicolas Delsuc Current Opinion in Chemical Biology, 67 , p. 102109, 2022, ISSN: 1367-5931. @article{POLICAR2022102109, title = {SOD mimics: From the tool box of the chemists to cellular studies}, author = {Clotilde Policar and Jean Bouvet and H\'{e}l\`{e}ne C Bertrand and Nicolas Delsuc}, url = {https://www.sciencedirect.com/science/article/pii/S136759312100154X}, doi = {https://doi.org/10.1016/j.cbpa.2021.102109}, issn = {1367-5931}, year = {2022}, date = {2022-01-01}, journal = {Current Opinion in Chemical Biology}, volume = {67}, pages = {102109}, abstract = {Superoxide dismutases (SODs) are metalloproteins that protect cells against oxidative stress by controlling the concentration of superoxide (O2−) through catalysis of its dismutation. The activity of superoxide dismutases can be mimicked by low-molecular-weight complexes having potential therapeutic applications. This review presents recent strategies for designing efficient SOD mimics, from molecular metal complexes to nanomaterials. Studies of these systems in cells reveal that some SOD mimics, designed to react directly with superoxide, may also indirectly enhance the cellular antioxidant arsenal. Finally, a good understanding of the bioactivity requires information on the cell-penetration, speciation, and subcellular location of the SOD mimics: we will describe recent studies and new techniques that open opportunities for characterizing SOD mimics in biological environments.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Superoxide dismutases (SODs) are metalloproteins that protect cells against oxidative stress by controlling the concentration of superoxide (O2−) through catalysis of its dismutation. The activity of superoxide dismutases can be mimicked by low-molecular-weight complexes having potential therapeutic applications. This review presents recent strategies for designing efficient SOD mimics, from molecular metal complexes to nanomaterials. Studies of these systems in cells reveal that some SOD mimics, designed to react directly with superoxide, may also indirectly enhance the cellular antioxidant arsenal. Finally, a good understanding of the bioactivity requires information on the cell-penetration, speciation, and subcellular location of the SOD mimics: we will describe recent studies and new techniques that open opportunities for characterizing SOD mimics in biological environments. |
Inertness of Superoxide Dismutase Mimics Mn(II) Complexes Based on an Open-Chain Ligand, Bioactivity, and Detection in Intestinal Epithelial Cells Article de journal Gabrielle Schanne; Martha Zoumpoulaki; Géraldine Gazzah; Amandine Vincent; Hugues Preud’homme; Ryszard Lobinski; Sylvie Demignot; Philippe Seksik; Nicolas Delsuc; Clotilde Policar Oxidative Medicine and Cellular Longevity, 2022 , p. e3858122, 2022, ISSN: 1942-0900, (Publisher: Hindawi). @article{schanne_inertness_2022, title = {Inertness of Superoxide Dismutase Mimics Mn(II) Complexes Based on an Open-Chain Ligand, Bioactivity, and Detection in Intestinal Epithelial Cells}, author = {Gabrielle Schanne and Martha Zoumpoulaki and G\'{e}raldine Gazzah and Amandine Vincent and Hugues Preud’homme and Ryszard Lobinski and Sylvie Demignot and Philippe Seksik and Nicolas Delsuc and Clotilde Policar}, url = {https://www.hindawi.com/journals/omcl/2022/3858122/}, doi = {10.1155/2022/3858122}, issn = {1942-0900}, year = {2022}, date = {2022-01-01}, urldate = {2022-04-03}, journal = {Oxidative Medicine and Cellular Longevity}, volume = {2022}, pages = {e3858122}, abstract = {Oxidative stress is known to play a major role in the pathogenesis of inflammatory bowel diseases (IBDs), and, in particular, superoxide dismutase (SODs) defenses were shown to be weakened in patients suffering from IBDs. SOD mimics, also called SOD mimetics, as low-molecular-weight complexes reproducing the activity of SOD, constitute promising antioxidant catalytic metallodrugs in the context of IBDs. A Mn(II) complex SOD mimic (Mn1) based on an open-chain diaminoethane ligand exerting antioxidant and anti-inflammatory effects on an intestinal epithelial cellular model was shown to experience metal exchanges between the manganese center and metal ions present in the biological environment (such as Zn(II)) to some degrees. As the resulting complexes (mainly Zn(II)) were shown to be inactive, improving the kinetic inertness of Mn(II) complexes based on open-chain ligands is key to improve their bioactivity in a cellular context. We report here the study of three new Mn(II) complexes resulting from Mn1 functionalization with a cyclohexyl and/or a propyl group meant to limit, respectively, (a) metal exchanges and (b) deprotonation of an amine from the 1,2-diaminoethane central scaffold. The new manganese-based SOD mimics display a higher intrinsic SOD activity and also improved kinetic inertness in metal ion exchange processes (with Zn(II), Cu(II), Ni(II), and Co(II)). They were shown to provide anti-inflammatory and antioxidant effects in cells at lower doses than Mn1 (down to 10 μM). This improvement was due to their higher inertness against metal-assisted dissociation and not to different cellular overall accumulations. Based on its higher inertness, the SOD mimic containing both the propyl and the cyclohexyl moieties was suitable for intracellular detection and quantification by mass spectrometry, quantification, that was achieved by using a 13C-labeled Co-based analog of the SOD mimics as an external heavy standard.}, note = {Publisher: Hindawi}, keywords = {}, pubstate = {published}, tppubtype = {article} } Oxidative stress is known to play a major role in the pathogenesis of inflammatory bowel diseases (IBDs), and, in particular, superoxide dismutase (SODs) defenses were shown to be weakened in patients suffering from IBDs. SOD mimics, also called SOD mimetics, as low-molecular-weight complexes reproducing the activity of SOD, constitute promising antioxidant catalytic metallodrugs in the context of IBDs. A Mn(II) complex SOD mimic (Mn1) based on an open-chain diaminoethane ligand exerting antioxidant and anti-inflammatory effects on an intestinal epithelial cellular model was shown to experience metal exchanges between the manganese center and metal ions present in the biological environment (such as Zn(II)) to some degrees. As the resulting complexes (mainly Zn(II)) were shown to be inactive, improving the kinetic inertness of Mn(II) complexes based on open-chain ligands is key to improve their bioactivity in a cellular context. We report here the study of three new Mn(II) complexes resulting from Mn1 functionalization with a cyclohexyl and/or a propyl group meant to limit, respectively, (a) metal exchanges and (b) deprotonation of an amine from the 1,2-diaminoethane central scaffold. The new manganese-based SOD mimics display a higher intrinsic SOD activity and also improved kinetic inertness in metal ion exchange processes (with Zn(II), Cu(II), Ni(II), and Co(II)). They were shown to provide anti-inflammatory and antioxidant effects in cells at lower doses than Mn1 (down to 10 μM). This improvement was due to their higher inertness against metal-assisted dissociation and not to different cellular overall accumulations. Based on its higher inertness, the SOD mimic containing both the propyl and the cyclohexyl moieties was suitable for intracellular detection and quantification by mass spectrometry, quantification, that was achieved by using a 13C-labeled Co-based analog of the SOD mimics as an external heavy standard. |
An expanded palette of fluorogenic HaloTag probes with enhanced contrast for targeted cellular imaging Article de journal Sylvestre P J T Bachollet; Yuriy Shpinov; Fanny Broch; Hela Benaissa; Arnaud Gautier; Nicolas Pietrancosta; Jean-Maurice Mallet; Blaise Dumat Organic & Biomolecular Chemistry, 20 (17), p. 3619 - 3628, 2022, ISSN: 1477-0520. @article{Bachollet2022, title = {An expanded palette of fluorogenic HaloTag probes with enhanced contrast for targeted cellular imaging}, author = {Sylvestre P J T Bachollet and Yuriy Shpinov and Fanny Broch and Hela Benaissa and Arnaud Gautier and Nicolas Pietrancosta and Jean-Maurice Mallet and Blaise Dumat}, url = {http://xlink.rsc.org/?DOI=D1OB02394B}, doi = {10.1039/D1OB02394B}, issn = {1477-0520}, year = {2022}, date = {2022-01-01}, journal = {Organic & Biomolecular Chemistry}, volume = {20}, number = {17}, pages = {3619 - 3628}, publisher = {Royal Society of Chemistry}, abstract = {A palette of fluorogenic molecular rotor probes with emissions from green to NIR was developed for wash-free and multicolor imaging of genetically-encoded HaloTag fusion proteins.}, keywords = {}, pubstate = {published}, tppubtype = {article} } A palette of fluorogenic molecular rotor probes with emissions from green to NIR was developed for wash-free and multicolor imaging of genetically-encoded HaloTag fusion proteins. |
Fluorogenic and Genetic Targeting of a Red-Emitting Molecular Calcium Indicator Article de journal Sylvestre P J T Bachollet; Nicolas Pietrancosta; Jean-Maurice Mallet; Blaise Dumat Chemical Communications, 2022. @article{Bachollet2022b, title = {Fluorogenic and Genetic Targeting of a Red-Emitting Molecular Calcium Indicator}, author = {Sylvestre P J T Bachollet and Nicolas Pietrancosta and Jean-Maurice Mallet and Blaise Dumat}, doi = {10.1039/D2CC01792J}, year = {2022}, date = {2022-01-01}, journal = {Chemical Communications}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2021 |
Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions Article de journal A Sayegh; L A Perego; M A Romero; L Escudero; J Delacotte; M Guille-Collignon; L Grimaud; B Bailleul; F Lemaitre Chemelectrochem, 8 (15), p. 2968-2978, 2021. @article{, title = {Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions}, author = {A Sayegh and L A Perego and M A Romero and L Escudero and J Delacotte and M Guille-Collignon and L Grimaud and B Bailleul and F Lemaitre}, url = {https://doi.org/10.1002/celc.202100757}, doi = {10.1002/celc.202100757}, year = {2021}, date = {2021-08-01}, journal = {Chemelectrochem}, volume = {8}, number = {15}, pages = {2968-2978}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions Article de journal A Sayegh; L A Perego; M A Romero; L Escudero; J Delacotte; M Guille-Collignon; L Grimaud; B Bailleul; F Lemaitre Chemelectrochem, 8 (15), p. 2968-2978, 2021. @article{, title = {Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions}, author = {A Sayegh and L A Perego and M A Romero and L Escudero and J Delacotte and M Guille-Collignon and L Grimaud and B Bailleul and F Lemaitre}, url = {https://doi.org/10.1002/celc.202100757}, doi = {10.1002/celc.202100757}, year = {2021}, date = {2021-08-01}, journal = {Chemelectrochem}, volume = {8}, number = {15}, pages = {2968-2978}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme Article de journal Koudedja Coulibaly; Marion Thauvin; Adyn Melenbacher; Clara Testard; Evangelina Trigoni; Amandine Vincent; Martin J Stillman; Sophie Vriz; Clotilde Policar; Nicolas Delsuc Inorganic Chemistry, 60 (13), p. 9309-9319, 2021. @article{doi:10.1021/acs.inorgchem.0c03718b, title = {A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme}, author = {Koudedja Coulibaly and Marion Thauvin and Adyn Melenbacher and Clara Testard and Evangelina Trigoni and Amandine Vincent and Martin J Stillman and Sophie Vriz and Clotilde Policar and Nicolas Delsuc}, url = {https://doi.org/10.1021/acs.inorgchem.0c03718}, doi = {10.1021/acs.inorgchem.0c03718}, year = {2021}, date = {2021-01-01}, journal = {Inorganic Chemistry}, volume = {60}, number = {13}, pages = {9309-9319}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Rhenium carbonyl complexes bearing methylated triphenylphosphonium cations as antibody-free mitochondria trackers for X-ray fluorescence imaging Article de journal Gabrielle Schanne; Lucas Henry; How Chee Ong; Andrea Somogyi; Kadda Medjoubi; Nicolas Delsuc; Clotilde Policar; Felipe García; Helene C Bertrand Inorg. Chem. Front., 8 , p. 3905-3915, 2021. @article{D1QI00542A, title = {Rhenium carbonyl complexes bearing methylated triphenylphosphonium cations as antibody-free mitochondria trackers for X-ray fluorescence imaging}, author = {Gabrielle Schanne and Lucas Henry and How Chee Ong and Andrea Somogyi and Kadda Medjoubi and Nicolas Delsuc and Clotilde Policar and Felipe Garc\'{i}a and Helene C Bertrand}, url = {http://dx.doi.org/10.1039/D1QI00542A}, doi = {10.1039/D1QI00542A}, year = {2021}, date = {2021-01-01}, journal = {Inorg. Chem. Front.}, volume = {8}, pages = {3905-3915}, publisher = {The Royal Society of Chemistry}, abstract = {Synchrotron Radiation X-ray Fluorescence (SXRF) imaging is a powerful technique for the visualization of metal complexes in biological systems. However, due to the lack of an endogenous elemental signature for mitochondria, probes for the localization of this organelle are required for colocalization studies. In this work, we designed and synthesized rhenium pyta tricarbonyl complexes conjugated to methylated triphenylphosphonium TP*P+ cations as multimodal probes for the visualization of mitochondria, suitable for fluorescence and SXRF imaging and quantification. Accumulation of the methylated triphenylphosphonium TP*P+-based conjugates in cells was observed in fixed A549 cells, and the amount of mitochondrial uptake was linked to the lipophilicity of the TPP+ vector. Our work highlights a convenient rhenium-based multimodal mitochondrial-targeted probe compatible with SXRF nano-imaging.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Synchrotron Radiation X-ray Fluorescence (SXRF) imaging is a powerful technique for the visualization of metal complexes in biological systems. However, due to the lack of an endogenous elemental signature for mitochondria, probes for the localization of this organelle are required for colocalization studies. In this work, we designed and synthesized rhenium pyta tricarbonyl complexes conjugated to methylated triphenylphosphonium TP*P+ cations as multimodal probes for the visualization of mitochondria, suitable for fluorescence and SXRF imaging and quantification. Accumulation of the methylated triphenylphosphonium TP*P+-based conjugates in cells was observed in fixed A549 cells, and the amount of mitochondrial uptake was linked to the lipophilicity of the TPP+ vector. Our work highlights a convenient rhenium-based multimodal mitochondrial-targeted probe compatible with SXRF nano-imaging. |
Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models Article de journal Amandine Vincent; Marion Thauvin; Elodie Quévrain; Emilie Mathieu; Sarah Layani; Philippe Seksik; Ines Batinic-Haberle; Sophie Vriz; Clotilde Policar; Nicolas Delsuc Journal of Inorganic Biochemistry, p. 111431, 2021, ISSN: 0162-0134. @article{VINCENT2021111431, title = {Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models}, author = {Amandine Vincent and Marion Thauvin and Elodie Qu\'{e}vrain and Emilie Mathieu and Sarah Layani and Philippe Seksik and Ines Batinic-Haberle and Sophie Vriz and Clotilde Policar and Nicolas Delsuc}, url = {https://www.sciencedirect.com/science/article/pii/S0162013421000787}, doi = {https://doi.org/10.1016/j.jinorgbio.2021.111431}, issn = {0162-0134}, year = {2021}, date = {2021-01-01}, journal = {Journal of Inorganic Biochemistry}, pages = {111431}, abstract = {Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2′-nbutoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5, 6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1, 4, 7, 10] tetra--azacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N′-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2′-nbutoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5, 6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1, 4, 7, 10] tetra--azacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N′-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels. |
2020 |
Fluorogenic Protein Probes with Red and Near‐Infrared Emission for Genetically Targeted Imaging** Article de journal Sylvestre P J T Bachollet; Cyril Addi; Nicolas Pietrancosta; Jean-Maurice Mallet; Blaise Dumat Chemistry – A European Journal, 26 (63), p. 14467–14473, 2020, ISSN: 0947-6539. @article{Bachollet2020, title = {Fluorogenic Protein Probes with Red and Near‐Infrared Emission for Genetically Targeted Imaging**}, author = {Sylvestre P J T Bachollet and Cyril Addi and Nicolas Pietrancosta and Jean-Maurice Mallet and Blaise Dumat}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202002911 https://onlinelibrary.wiley.com/doi/10.1002/chem.202002911}, doi = {10.1002/chem.202002911}, issn = {0947-6539}, year = {2020}, date = {2020-11-01}, journal = {Chemistry \textendash A European Journal}, volume = {26}, number = {63}, pages = {14467--14473}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese(ii) superoxide dismutase mimic complex Article de journal Emilie Mathieu; Anne-Sophie Bernard; Elodie Quévrain; Martha Zoumpoulaki; Sébastien Iriart; Caroline Lung-Soong; Barry Lai; Kadda Medjoubi; Lucas Henry; Sounderya Nagarajan; Florent Poyer; Andreas Scheitler; Ivana Ivanović-Burmazović; Sergio Marco; Andrea Somogyi; Philippe Seksik; Nicolas Delsuc; Clotilde Policar Chem. Commun., p. -, 2020. @article{D0CC03398G, title = {Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese(ii) superoxide dismutase mimic complex}, author = {Emilie Mathieu and Anne-Sophie Bernard and Elodie Qu\'{e}vrain and Martha Zoumpoulaki and S\'{e}bastien Iriart and Caroline Lung-Soong and Barry Lai and Kadda Medjoubi and Lucas Henry and Sounderya Nagarajan and Florent Poyer and Andreas Scheitler and Ivana Ivanovi\'{c}-Burmazovi\'{c} and Sergio Marco and Andrea Somogyi and Philippe Seksik and Nicolas Delsuc and Clotilde Policar}, url = {http://dx.doi.org/10.1039/D0CC03398G}, doi = {10.1039/D0CC03398G}, year = {2020}, date = {2020-01-01}, journal = {Chem. Commun.}, pages = {-}, publisher = {The Royal Society of Chemistry}, abstract = {A conjugate of a Mn-based superoxide dismutase mimic with a Re-based multimodal probe ̲ was studied in a cellular model of oxidative stress. Its speciation was investigated using Re and Mn X-fluorescence. Interestingly, ̲ shows a distribution different from its unconjugated analogue but a similar concentration in mitochondria and a similar bioactivity.}, keywords = {}, pubstate = {published}, tppubtype = {article} } A conjugate of a Mn-based superoxide dismutase mimic with a Re-based multimodal probe ̲ was studied in a cellular model of oxidative stress. Its speciation was investigated using Re and Mn X-fluorescence. Interestingly, ̲ shows a distribution different from its unconjugated analogue but a similar concentration in mitochondria and a similar bioactivity. |
An easy-to-implement combinatorial approach involving an activity-based assay for the discovery of a peptidyl copper complex mimicking superoxide dismutase Article de journal Amandine Vincent; Jennifer Rodon Fores; Elodie Tauziet; Elodie Quévrain; Ágnes Dancs; Amandine Conte-Daban; Anne-Sophie Bernard; Philippe Pelupessy; Koudedja Coulibaly; Philippe Seksik; Christelle Hureau; Katalin Selmeczi; Clotilde Policar; Nicolas Delsuc Chem. Commun., 56 , p. 399-402, 2020. @article{C9CC07920C, title = {An easy-to-implement combinatorial approach involving an activity-based assay for the discovery of a peptidyl copper complex mimicking superoxide dismutase}, author = {Amandine Vincent and Jennifer Rodon Fores and Elodie Tauziet and Elodie Qu\'{e}vrain and \'{A}gnes Dancs and Amandine Conte-Daban and Anne-Sophie Bernard and Philippe Pelupessy and Koudedja Coulibaly and Philippe Seksik and Christelle Hureau and Katalin Selmeczi and Clotilde Policar and Nicolas Delsuc}, url = {http://dx.doi.org/10.1039/C9CC07920C}, doi = {10.1039/C9CC07920C}, year = {2020}, date = {2020-01-01}, journal = {Chem. Commun.}, volume = {56}, pages = {399-402}, publisher = {The Royal Society of Chemistry}, abstract = {A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress.}, keywords = {}, pubstate = {published}, tppubtype = {article} } A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress. |
Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides Article de journal Emilie Mathieu; Anne-Sophie Bernard; Vincent H Y Ching; Andrea Somogyi; Kadda Medjoubi; Jennifer Rodon Fores; Hélène C Bertrand; Amandine Vincent; Sylvain Trépout; Jean-Luc Guerquin-Kern; Andreas Scheitler; Ivana Ivanović-Burmazović; Philippe Seksik; Nicolas Delsuc; Clotilde Policar Dalton Trans., 49 , p. 2323-2330, 2020. @article{C9DT04619Db, title = {Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides}, author = {Emilie Mathieu and Anne-Sophie Bernard and Vincent H Y Ching and Andrea Somogyi and Kadda Medjoubi and Jennifer Rodon Fores and H\'{e}l\`{e}ne C Bertrand and Amandine Vincent and Sylvain Tr\'{e}pout and Jean-Luc Guerquin-Kern and Andreas Scheitler and Ivana Ivanovi\'{c}-Burmazovi\'{c} and Philippe Seksik and Nicolas Delsuc and Clotilde Policar}, url = {http://dx.doi.org/10.1039/C9DT04619D}, doi = {10.1039/C9DT04619D}, year = {2020}, date = {2020-01-01}, journal = {Dalton Trans.}, volume = {49}, pages = {2323-2330}, publisher = {The Royal Society of Chemistry}, abstract = {A superoxide dismutase mimic (Mn1) was functionalized with three positively charged-peptides: RRRRRRRRR (Mn1-R9), RRWWWRRWRR (Mn1-RW9) or Fx-r-Fx-K (Mn1-MPP). Characterization of the physico-chemical properties of the complexes show that they share similar binding affinity for Mn2+, apparent reduction potential and intrinsic superoxide dismutase activity. However, their accumulation in cells is different (Mn1-R9 < Mn1-MPP < Mn1-RW9 < Mn1), as well as their subcellular distribution. In addition, the three functionalized-complexes display a better anti-inflammatory activity than Mn1 when assayed at 10 μM. This improvement is due to a combination of an anti-inflammatory effect of the peptidyl moiety itself, and of the SOD mimic for Mn1-RW9 and Mn1-MPP. In contrast, the enhanced anti-inflammatory activity of Mn1-R9 is solely due to the SOD mimic.}, keywords = {}, pubstate = {published}, tppubtype = {article} } A superoxide dismutase mimic (Mn1) was functionalized with three positively charged-peptides: RRRRRRRRR (Mn1-R9), RRWWWRRWRR (Mn1-RW9) or Fx-r-Fx-K (Mn1-MPP). Characterization of the physico-chemical properties of the complexes show that they share similar binding affinity for Mn2+, apparent reduction potential and intrinsic superoxide dismutase activity. However, their accumulation in cells is different (Mn1-R9 < Mn1-MPP < Mn1-RW9 < Mn1), as well as their subcellular distribution. In addition, the three functionalized-complexes display a better anti-inflammatory activity than Mn1 when assayed at 10 μM. This improvement is due to a combination of an anti-inflammatory effect of the peptidyl moiety itself, and of the SOD mimic for Mn1-RW9 and Mn1-MPP. In contrast, the enhanced anti-inflammatory activity of Mn1-R9 is solely due to the SOD mimic. |
2019 |
Mannose-Coated Fluorescent Lipid Microparticles for Specific Cellular Targeting and Internalization via Glycoreceptor-Induced Phagocytosis Article de journal Blaise Dumat; Lorraine Montel; Léa Pinon; Pascal Matton; Laurent Cattiaux; Jacques Fattaccioli; Jean-Maurice Mallet ACS Applied Bio Materials, 2 , p. 5118-5126, 2019, ISSN: 2576-6422. @article{Dumat2019, title = {Mannose-Coated Fluorescent Lipid Microparticles for Specific Cellular Targeting and Internalization via Glycoreceptor-Induced Phagocytosis}, author = {Blaise Dumat and Lorraine Montel and L\'{e}a Pinon and Pascal Matton and Laurent Cattiaux and Jacques Fattaccioli and Jean-Maurice Mallet}, url = {https://pubs.acs.org/doi/10.1021/acsabm.9b00793}, doi = {10.1021/acsabm.9b00793}, issn = {2576-6422}, year = {2019}, date = {2019-11-01}, journal = {ACS Applied Bio Materials}, volume = {2}, pages = {5118-5126}, publisher = {American Chemical Society}, abstract = {In this work we report on the development of mannose-coated fluorescent lipid microparticles to study the role of C-type lectin membrane receptor in phagocytosis. The micrometric droplets of Soybean oil in water emulsion were functionalized with a tailor-made fluorescent mannolipid. The amphiphilic ligand was built from a mannose unit, a lipid C11 spacer and a naphthalimide fluorophore. The droplets functionalization was monitored by fluorescence microscopy as well as the interaction with concanavalin A which was used as a model lectin in vitro. The use of a monovalent ligand on the surface of emulsion droplets yielded particles with an affinity approximately 40 times higher than that of free mannose. In cellulo, the coated droplets were shown to be specifically internalized by macrophages in a receptor-dependent phagocytic pathway. The naked droplets on the other hand display very little internalization due to their low immunogenicity. This work thus brings evidence that C-type lectin membrane receptors ...}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this work we report on the development of mannose-coated fluorescent lipid microparticles to study the role of C-type lectin membrane receptor in phagocytosis. The micrometric droplets of Soybean oil in water emulsion were functionalized with a tailor-made fluorescent mannolipid. The amphiphilic ligand was built from a mannose unit, a lipid C11 spacer and a naphthalimide fluorophore. The droplets functionalization was monitored by fluorescence microscopy as well as the interaction with concanavalin A which was used as a model lectin in vitro. The use of a monovalent ligand on the surface of emulsion droplets yielded particles with an affinity approximately 40 times higher than that of free mannose. In cellulo, the coated droplets were shown to be specifically internalized by macrophages in a receptor-dependent phagocytic pathway. The naked droplets on the other hand display very little internalization due to their low immunogenicity. This work thus brings evidence that C-type lectin membrane receptors ... |
Oxaliplatin-induced neuropathy: the preventive effect of a new super-oxide dismutase modulator Article de journal Marie-Anne Guillaumot; Olivier Cerles; Hélène C Bertrand; Evelyne Benoit; Carole Nicco; Sandrine Chouzenoux; Alain Schmitt; Frédéric Batteux; Clotilde Policar; Romain Coriat Oncotarget, 10 (60), p. 6418-6431, 2019, ISSN: 1949-2553. @article{OT27248, title = {Oxaliplatin-induced neuropathy: the preventive effect of a new super-oxide dismutase modulator}, author = {Marie-Anne Guillaumot and Olivier Cerles and H\'{e}l\`{e}ne C Bertrand and Evelyne Benoit and Carole Nicco and Sandrine Chouzenoux and Alain Schmitt and Fr\'{e}d\'{e}ric Batteux and Clotilde Policar and Romain Coriat}, url = {https://www.oncotarget.com/article/27248/}, doi = {https://doi.org/10.18632/oncotarget.27248}, issn = {1949-2553}, year = {2019}, date = {2019-01-01}, journal = {Oncotarget}, volume = {10}, number = {60}, pages = {6418-6431}, publisher = {Impact Journals, LLC}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models Article de journal J Pandard; N Pan; D H Ebene; T Le Saux; E Ait-Yahiatène; X Liu; L Grimaud; O Buriez; E Labbé; F Lemaître; M Guille-Collignon ChemPlusChem, 84 (10), p. 1578-1586, 2019, (cited By 0). @article{Pandard20191578, title = {A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models}, author = {J Pandard and N Pan and D H Ebene and T Le Saux and E Ait-Yahiat\`{e}ne and X Liu and L Grimaud and O Buriez and E Labb\'{e} and F Lema\^{i}tre and M Guille-Collignon}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073931778&doi=10.1002%2fcplu.201900385&partnerID=40&md5=a526291d966e7dc926b44e97c73794b3}, doi = {10.1002/cplu.201900385}, year = {2019}, date = {2019-01-01}, journal = {ChemPlusChem}, volume = {84}, number = {10}, pages = {1578-1586}, note = {cited By 0}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Glycoreplica peptides to investigate molecular mechanisms of immune-mediated physiological versus pathological conditions Article de journal A Mazzoleni; J -M Mallet; P Rovero; A M Papini Archives of Biochemistry and Biophysics, 663 , p. 44–53, 2019. @article{Mazzoleni:2019, title = {Glycoreplica peptides to investigate molecular mechanisms of immune-mediated physiological versus pathological conditions}, author = {A Mazzoleni and J -M Mallet and P Rovero and A M Papini}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059303265&doi=10.1016%2fj.abb.2018.12.030&partnerID=40&md5=054e28b7f9071c163b4af5dcba3d2fcd}, doi = {10.1016/j.abb.2018.12.030}, year = {2019}, date = {2019-01-01}, journal = {Archives of Biochemistry and Biophysics}, volume = {663}, pages = {44--53}, abstract = {Investigation of the role of saccharides and glycoconjugates in mechanisms of immune-mediated physiological and pathological conditions is a hot topic. In fact, in many autoimmune diseases cross-reactivity between sugar moieties exposed on exogenous pathogens and self-molecules has long been hinted. Several peptides have been reported as mimetics of glycans specifically interacting with sugar-binding antibodies. The seek for these glycoreplica peptides is instrumental in characterizing antigen mimicry pathways and their involvement in triggering autoimmunity. Therefore, peptides mimicking glycan-protein interactions are valuable molecular tools to overcome the difficulties of oligosaccharide preparations. The clinical impact of peptide-based probes for autoimmune diseases diagnosis and follow-up is emerging only recently as just the tip of the iceberg of an overlooked potential. Here we provide a brief overview of the relevance of the structural and functional aspects of peptide probes and their mimicry effect in autoimmunity mechanisms for promising applications in diagnostics and therapeutics. © 2019 Elsevier Inc.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Investigation of the role of saccharides and glycoconjugates in mechanisms of immune-mediated physiological and pathological conditions is a hot topic. In fact, in many autoimmune diseases cross-reactivity between sugar moieties exposed on exogenous pathogens and self-molecules has long been hinted. Several peptides have been reported as mimetics of glycans specifically interacting with sugar-binding antibodies. The seek for these glycoreplica peptides is instrumental in characterizing antigen mimicry pathways and their involvement in triggering autoimmunity. Therefore, peptides mimicking glycan-protein interactions are valuable molecular tools to overcome the difficulties of oligosaccharide preparations. The clinical impact of peptide-based probes for autoimmune diseases diagnosis and follow-up is emerging only recently as just the tip of the iceberg of an overlooked potential. Here we provide a brief overview of the relevance of the structural and functional aspects of peptide probes and their mimicry effect in autoimmunity mechanisms for promising applications in diagnostics and therapeutics. © 2019 Elsevier Inc. |
From Benzofurans to Indoles: Palladium-Catalyzed Reductive Ring-Opening and Closure via β-Phenoxide Elimination Article de journal L A Perego; S Wagschal; R Grüber; P Fleurat-Lessard; L El Kaïm; L Grimaud Advanced Synthesis and Catalysis, 361 (1), p. 151–159, 2019. @article{Perego:2019, title = {From Benzofurans to Indoles: Palladium-Catalyzed Reductive Ring-Opening and Closure via β-Phenoxide Elimination}, author = {L A Perego and S Wagschal and R Gr\"{u}ber and P Fleurat-Lessard and L El Ka\"{i}m and L Grimaud}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057441313&doi=10.1002%2fadsc.201801225&partnerID=40&md5=56673a99ee9fc8c525272edb560d0ecc}, doi = {10.1002/adsc.201801225}, year = {2019}, date = {2019-01-01}, journal = {Advanced Synthesis and Catalysis}, volume = {361}, number = {1}, pages = {151--159}, abstract = {Benzofurans can undergo ring-opening by a palladium-catalyzed process resulting in C−O bond breaking. Benzofuran-tethered 2-iodoanilines give synthetically interesting 2-(3-indolylmethyl)phenols in an overall reductive process. Mechanistic studies suggest that this unusual reaction proceeds by carbopalladation of benzofuran giving a 3-palladated 2,3-dihydrobenzofuran intermediate, which then fragments by an uncommon trans-elimination of the phenoxide group β to the metal. In this transformation, N,N-diisopropylethylamine (DIPEA) acts as a base and as a reducing agent: it regenerates palladium(0) from palladium(II), thus allowing catalytic turnover. (Figure presented.). © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim}, keywords = {}, pubstate = {published}, tppubtype = {article} } Benzofurans can undergo ring-opening by a palladium-catalyzed process resulting in C−O bond breaking. Benzofuran-tethered 2-iodoanilines give synthetically interesting 2-(3-indolylmethyl)phenols in an overall reductive process. Mechanistic studies suggest that this unusual reaction proceeds by carbopalladation of benzofuran giving a 3-palladated 2,3-dihydrobenzofuran intermediate, which then fragments by an uncommon trans-elimination of the phenoxide group β to the metal. In this transformation, N,N-diisopropylethylamine (DIPEA) acts as a base and as a reducing agent: it regenerates palladium(0) from palladium(II), thus allowing catalytic turnover. (Figure presented.). © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles Article de journal L Hu; A Savy; L Grimaud; M Guille-Collignon; F Lemaître; C Amatore; J Delacotte Biophysical Chemistry, 245 , p. 1–5, 2019. @article{Hu:2019, title = {Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles}, author = {L Hu and A Savy and L Grimaud and M Guille-Collignon and F Lema\^{i}tre and C Amatore and J Delacotte}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057201704&doi=10.1016%2fj.bpc.2018.11.001&partnerID=40&md5=28655b4c152ce0fc51fc037feefcff97}, doi = {10.1016/j.bpc.2018.11.001}, year = {2019}, date = {2019-01-01}, journal = {Biophysical Chemistry}, volume = {245}, pages = {1--5}, abstract = {In the last decade, following fluorescent dyes and protein tags, pH sensitive false fluorescent neurotransmitters (FFN) were introduced and were valuable for labeling secretory vesicles and monitoring exocytosis at living cells. In particular, the synthetic analog of neurotransmitters FFN102 was shown to be an electroactive probe. Here, we show that FFN102 is suitable to be used as a bioanalytic probe at the widely used PC12 cell model. FFN102 was uptaken in the secretory vesicles of PC12 cells, partially replacing the endogenous dopamine stored in these vesicles. The different oxidation potentials of dopamine and FFN102 allowed to determine that ca. 12% of dopamine was replaced by FFN102. Moreover, the FFN102 was found to be over released through the initial fusion pore suggesting that it was mostly uptaken in fast diffusion compartment of the vesicles. © 2018 Elsevier B.V.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In the last decade, following fluorescent dyes and protein tags, pH sensitive false fluorescent neurotransmitters (FFN) were introduced and were valuable for labeling secretory vesicles and monitoring exocytosis at living cells. In particular, the synthetic analog of neurotransmitters FFN102 was shown to be an electroactive probe. Here, we show that FFN102 is suitable to be used as a bioanalytic probe at the widely used PC12 cell model. FFN102 was uptaken in the secretory vesicles of PC12 cells, partially replacing the endogenous dopamine stored in these vesicles. The different oxidation potentials of dopamine and FFN102 allowed to determine that ca. 12% of dopamine was replaced by FFN102. Moreover, the FFN102 was found to be over released through the initial fusion pore suggesting that it was mostly uptaken in fast diffusion compartment of the vesicles. © 2018 Elsevier B.V. |
Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer Article de journal J Bellier; M -J Nokin; E Lardé; P Karoyan; O Peulen; V Castronovo; A Bellahcène Diabetes Research and Clinical Practice, 148 , p. 200–211, 2019. @article{Bellier:2019, title = {Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer}, author = {J Bellier and M -J Nokin and E Lard\'{e} and P Karoyan and O Peulen and V Castronovo and A Bellahc\`{e}ne}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060445406&doi=10.1016%2fj.diabres.2019.01.002&partnerID=40&md5=0f0783fde807776888c9436e0430c762}, doi = {10.1016/j.diabres.2019.01.002}, year = {2019}, date = {2019-01-01}, journal = {Diabetes Research and Clinical Practice}, volume = {148}, pages = {200--211}, abstract = {Diabetes is one of the most frequent diseases throughout the world and its incidence is predicted to exponentially progress in the future. This metabolic disorder is associated with major complications such as neuropathy, retinopathy, atherosclerosis, and diabetic nephropathy, the severity of which correlates with hyperglycemia, suggesting that they are triggered by high glucose condition. Reducing sugars and reactive carbonyl species such as methylglyoxal (MGO) lead to glycation of proteins, lipids and DNA and the gradual accumulation of advanced glycation end products (AGEs) in cells and tissues. While AGEs are clearly implicated in the pathogenesis of diabetes complications, their potential involvement during malignant tumor development, progression and resistance to therapy is an emerging concept. Meta-analysis studies established that patients with diabetes are at higher risk of developing cancer and show a higher mortality rate than cancer patients free of diabetes. In this review, we highlight the potential connection between hyperglycemia-associated AGEs formation on the one hand and the recent evidence of pro-tumoral effects of MGO stress on the other hand. We also discuss the marked interest in anti-glycation compounds in view of their strategic use to treat diabetic complications but also to protect against augmented cancer risk in patients with diabetes. © 2019}, keywords = {}, pubstate = {published}, tppubtype = {article} } Diabetes is one of the most frequent diseases throughout the world and its incidence is predicted to exponentially progress in the future. This metabolic disorder is associated with major complications such as neuropathy, retinopathy, atherosclerosis, and diabetic nephropathy, the severity of which correlates with hyperglycemia, suggesting that they are triggered by high glucose condition. Reducing sugars and reactive carbonyl species such as methylglyoxal (MGO) lead to glycation of proteins, lipids and DNA and the gradual accumulation of advanced glycation end products (AGEs) in cells and tissues. While AGEs are clearly implicated in the pathogenesis of diabetes complications, their potential involvement during malignant tumor development, progression and resistance to therapy is an emerging concept. Meta-analysis studies established that patients with diabetes are at higher risk of developing cancer and show a higher mortality rate than cancer patients free of diabetes. In this review, we highlight the potential connection between hyperglycemia-associated AGEs formation on the one hand and the recent evidence of pro-tumoral effects of MGO stress on the other hand. We also discuss the marked interest in anti-glycation compounds in view of their strategic use to treat diabetic complications but also to protect against augmented cancer risk in patients with diabetes. © 2019 |
2018 |
Macrophage-derived superoxide production and antioxidant response following skeletal muscle injury Article de journal E Le Moal; G Juban; A S Bernard; T Varga; C Policar; B Chazaud; R Mounier Free Radical Biology and Medicine, 120 , p. 33–40, 2018. @article{LeMoal:2018, title = {Macrophage-derived superoxide production and antioxidant response following skeletal muscle injury}, author = {E Le Moal and G Juban and A S Bernard and T Varga and C Policar and B Chazaud and R Mounier}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044047057&doi=10.1016%2fj.freeradbiomed.2018.02.024&partnerID=40&md5=3d7a016c57bd52dfee180ac22ee70ae8}, doi = {10.1016/j.freeradbiomed.2018.02.024}, year = {2018}, date = {2018-01-01}, journal = {Free Radical Biology and Medicine}, volume = {120}, pages = {33--40}, abstract = {Macrophages are key players of immunity that display different functions according to their activation states. In a regenerative context, pro-inflammatory macrophages (Ly6Cpos) are involved in the mounting of the inflammatory response whereas anti-inflammatory macrophages (Ly6Cneg) dampen the inflammation and promote tissue repair. Reactive oxygen species (ROS) production is a hallmark of tissue injury and of subsequent inflammation as described in a bacterial challenge context. However, whether macrophages produce ROS following a sterile tissue injury is uncertain. In this study, we used complementary in vitro, ex vivo and in vivo experiments in mouse to show that macrophages do not release ROS following a sterile injury in skeletal muscle. Furthermore, expression profiles of genes involved in the response to oxidative stress in Ly6Cpos and Ly6Cneg macrophage subsets did not indicate any antioxidant response in this context. Finally, in vivo, pharmacological antioxidant supplementation with N-Acetyl-cysteine (NAC) following skeletal muscle injury did not alter macrophage phenotype during skeletal muscle regeneration. Overall, these results indicate that following a sterile injury, macrophage-derived ROS release is not involved in the regulation of the inflammatory response in the regenerating skeletal muscle. © 2018 Elsevier Inc.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Macrophages are key players of immunity that display different functions according to their activation states. In a regenerative context, pro-inflammatory macrophages (Ly6Cpos) are involved in the mounting of the inflammatory response whereas anti-inflammatory macrophages (Ly6Cneg) dampen the inflammation and promote tissue repair. Reactive oxygen species (ROS) production is a hallmark of tissue injury and of subsequent inflammation as described in a bacterial challenge context. However, whether macrophages produce ROS following a sterile tissue injury is uncertain. In this study, we used complementary in vitro, ex vivo and in vivo experiments in mouse to show that macrophages do not release ROS following a sterile injury in skeletal muscle. Furthermore, expression profiles of genes involved in the response to oxidative stress in Ly6Cpos and Ly6Cneg macrophage subsets did not indicate any antioxidant response in this context. Finally, in vivo, pharmacological antioxidant supplementation with N-Acetyl-cysteine (NAC) following skeletal muscle injury did not alter macrophage phenotype during skeletal muscle regeneration. Overall, these results indicate that following a sterile injury, macrophage-derived ROS release is not involved in the regulation of the inflammatory response in the regenerating skeletal muscle. © 2018 Elsevier Inc. |
New branched amino acids for high affinity dendrimeric DC-SIGN ligands Article de journal L Cattiaux; V Porkolab; F Fieschi; J -M Mallet Bioorganic and Medicinal Chemistry, 26 (5), p. 1006–1015, 2018. @article{Cattiaux:2018, title = {New branched amino acids for high affinity dendrimeric DC-SIGN ligands}, author = {L Cattiaux and V Porkolab and F Fieschi and J -M Mallet}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042048650&doi=10.1016%2fj.bmc.2017.12.036&partnerID=40&md5=d1f8a5e526fefe44ef305de5415a2eb5}, doi = {10.1016/j.bmc.2017.12.036}, year = {2018}, date = {2018-01-01}, journal = {Bioorganic and Medicinal Chemistry}, volume = {26}, number = {5}, pages = {1006--1015}, abstract = {A branched amino acid was synthesized from methyl glucopyranoside; this amino acid presents three amino groups protected by Fmoc and one acid group and can be used in classic peptide synthesis. In parallel, similar azido terminated blocks were synthesized. Successive coupling reaction and deprotection afforded dendrimers with up to 27 azido functional groups. As an example of application, D-mannose and L-fucose residues were linked through CuAAC coupling and resulting glycodendrimers were evaluated in their interaction with DC-SIGN using SPR competition assay. © 2017 Elsevier Ltd}, keywords = {}, pubstate = {published}, tppubtype = {article} } A branched amino acid was synthesized from methyl glucopyranoside; this amino acid presents three amino groups protected by Fmoc and one acid group and can be used in classic peptide synthesis. In parallel, similar azido terminated blocks were synthesized. Successive coupling reaction and deprotection afforded dendrimers with up to 27 azido functional groups. As an example of application, D-mannose and L-fucose residues were linked through CuAAC coupling and resulting glycodendrimers were evaluated in their interaction with DC-SIGN using SPR competition assay. © 2017 Elsevier Ltd |
Redox switchable rhodamine-ferrocene dyad: Exploring imaging possibilities in cells Article de journal M Čížková; L Cattiaux; J Pandard; M Guille-Collignon; F Lemaître; J Delacotte; J -M Mallet; E Labbé; O Buriez Electrochemistry Communications, 97 , p. 46–50, 2018. @article{Cizkova:2018, title = {Redox switchable rhodamine-ferrocene dyad: Exploring imaging possibilities in cells}, author = {M \v{C}\'{i}\v{z}kov\'{a} and L Cattiaux and J Pandard and M Guille-Collignon and F Lema\^{i}tre and J Delacotte and J -M Mallet and E Labb\'{e} and O Buriez}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054592456&doi=10.1016%2fj.elecom.2018.10.009&partnerID=40&md5=10a4aed1c89bb6a788a2a260bbd0a818}, doi = {10.1016/j.elecom.2018.10.009}, year = {2018}, date = {2018-01-01}, journal = {Electrochemistry Communications}, volume = {97}, pages = {46--50}, abstract = {An original redox-responsive fluorescent probe combining a rhodamine derivative and a ferrocenyl moiety used as the fluorescence modulator was designed, synthesized and characterized. The fluorescence of this new dyad could be tuned from the redox state of ferrocene, a feature observed both electrochemically and on cancer cells incubated with this probe. © 2018 Elsevier B.V.}, keywords = {}, pubstate = {published}, tppubtype = {article} } An original redox-responsive fluorescent probe combining a rhodamine derivative and a ferrocenyl moiety used as the fluorescence modulator was designed, synthesized and characterized. The fluorescence of this new dyad could be tuned from the redox state of ferrocene, a feature observed both electrochemically and on cancer cells incubated with this probe. © 2018 Elsevier B.V. |
GPCR modulation in breast cancer Article de journal R Lappano; Y Jacquot; M Maggiolini International Journal of Molecular Sciences, 19 (12), 2018. @article{Lappano:2018, title = {GPCR modulation in breast cancer}, author = {R Lappano and Y Jacquot and M Maggiolini}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057977359&doi=10.3390%2fijms19123840&partnerID=40&md5=2eda31a7898bc134fec0136f301bf16a}, doi = {10.3390/ijms19123840}, year = {2018}, date = {2018-01-01}, journal = {International Journal of Molecular Sciences}, volume = {19}, number = {12}, abstract = {Breast cancer is the most prevalent cancer found in women living in developed countries. Endocrine therapy is the mainstay of treatment for hormone-responsive breast tumors (about 70% of all breast cancers) and implies the use of selective estrogen receptor modulators and aromatase inhibitors. In contrast, triple-negative breast cancer (TNBC), a highly heterogeneous disease that may account for up to 24% of all newly diagnosed cases, is hormone-independent and characterized by a poor prognosis. As drug resistance is common in all breast cancer subtypes despite the different treatment modalities, novel therapies targeting signaling transduction pathways involved in the processes of breast carcinogenesis, tumor promotion and metastasis have been subject to accurate consideration. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in the development and progression of many tumors including breast cancer. Here we discuss data regarding GPCR-mediated signaling, pharmacological properties and biological outputs toward breast cancer tumorigenesis and metastasis. Furthermore, we address several drugs that have shown an unexpected opportunity to interfere with GPCR-based breast tumorigenic signals. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Breast cancer is the most prevalent cancer found in women living in developed countries. Endocrine therapy is the mainstay of treatment for hormone-responsive breast tumors (about 70% of all breast cancers) and implies the use of selective estrogen receptor modulators and aromatase inhibitors. In contrast, triple-negative breast cancer (TNBC), a highly heterogeneous disease that may account for up to 24% of all newly diagnosed cases, is hormone-independent and characterized by a poor prognosis. As drug resistance is common in all breast cancer subtypes despite the different treatment modalities, novel therapies targeting signaling transduction pathways involved in the processes of breast carcinogenesis, tumor promotion and metastasis have been subject to accurate consideration. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in the development and progression of many tumors including breast cancer. Here we discuss data regarding GPCR-mediated signaling, pharmacological properties and biological outputs toward breast cancer tumorigenesis and metastasis. Furthermore, we address several drugs that have shown an unexpected opportunity to interfere with GPCR-based breast tumorigenic signals. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. |
S Cardon; E Sachon; L Carlier; T Drujon; A Walrant; E Alemán-Navarro; V Martínez-Osorio; D Guianvarc’h; S Sagan; Y Fleury; R Marquant; C Piesse; Y Rosenstein; C Auvynet; C Lacombe PLoS ONE, 13 (10), 2018. @article{Cardon:2018, title = {Peptidoglycan potentiates the membrane disrupting effect of the carboxyamidated form of DMS-DA6, a Gram-positive selective antimicrobial peptide isolated from Pachymedusa dacnicolor skin}, author = {S Cardon and E Sachon and L Carlier and T Drujon and A Walrant and E Alem\'{a}n-Navarro and V Mart\'{i}nez-Osorio and D Guianvarc’h and S Sagan and Y Fleury and R Marquant and C Piesse and Y Rosenstein and C Auvynet and C Lacombe}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055075541&doi=10.1371%2fjournal.pone.0205727&partnerID=40&md5=90ca83358f76849aeaf6bde148982206}, doi = {10.1371/journal.pone.0205727}, year = {2018}, date = {2018-01-01}, journal = {PLoS ONE}, volume = {13}, number = {10}, abstract = {The occurrence of nosocomial infections has been on the rise for the past twenty years. Notably, infections caused by the Gram-positive bacteria Staphylococcus aureus represent a major clinical problem, as an increase in antibiotic multi-resistant strains has accompanied this rise. There is thus a crucial need to find and characterize new antibiotics against Gram-positive bacteria, and against antibiotic-resistant strains in general. We identified a new dermaseptin, DMS-DA6, produced by the skin of the Mexican frog Pachymedusa dacnicolor, with specific antibacterial activity against Gram-positive bacteria. This peptide is particularly effective against two multiple drug-resistant strains Enterococcus faecium BM4147 and Staphylococcus aureus DAR5829, and has no hemolytic activity. DMS-DA6 is naturally produced with the C-terminal carboxyl group in either the free or amide forms. By using Gram-positive model membranes and different experimental approaches, we showed that both forms of the peptide adopt an ∞-helical fold and have the same ability to insert into, and to disorganize a membrane composed of anionic lipids. However, the bactericidal capacity of DMS-DA6-NH2 was consistently more potent than that of DMS-DA6-OH. Remarkably, rather than resulting from the interaction with the negatively charged lipids of the membrane, or from a more stable conformation towards proteolysis, the increased capacity to permeabilize the membrane of Gram-positive bacteria of the carboxyamidated form of DMS-DA6 was found to result from its enhanced ability to interact with peptidoglycan. © 2018 Cardon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The occurrence of nosocomial infections has been on the rise for the past twenty years. Notably, infections caused by the Gram-positive bacteria Staphylococcus aureus represent a major clinical problem, as an increase in antibiotic multi-resistant strains has accompanied this rise. There is thus a crucial need to find and characterize new antibiotics against Gram-positive bacteria, and against antibiotic-resistant strains in general. We identified a new dermaseptin, DMS-DA6, produced by the skin of the Mexican frog Pachymedusa dacnicolor, with specific antibacterial activity against Gram-positive bacteria. This peptide is particularly effective against two multiple drug-resistant strains Enterococcus faecium BM4147 and Staphylococcus aureus DAR5829, and has no hemolytic activity. DMS-DA6 is naturally produced with the C-terminal carboxyl group in either the free or amide forms. By using Gram-positive model membranes and different experimental approaches, we showed that both forms of the peptide adopt an ∞-helical fold and have the same ability to insert into, and to disorganize a membrane composed of anionic lipids. However, the bactericidal capacity of DMS-DA6-NH2 was consistently more potent than that of DMS-DA6-OH. Remarkably, rather than resulting from the interaction with the negatively charged lipids of the membrane, or from a more stable conformation towards proteolysis, the increased capacity to permeabilize the membrane of Gram-positive bacteria of the carboxyamidated form of DMS-DA6 was found to result from its enhanced ability to interact with peptidoglycan. © 2018 Cardon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
A Metallo Pro-Drug to Target CuII in the Context of Alzheimer's Disease Article de journal A Conte-Daban; V Ambike; R Guillot; N Delsuc; C Policar; C Hureau Chemistry - A European Journal, 24 (20), p. 5095–5099, 2018. @article{Conte-Daban:2018, title = {A Metallo Pro-Drug to Target CuII in the Context of Alzheimer's Disease}, author = {A Conte-Daban and V Ambike and R Guillot and N Delsuc and C Policar and C Hureau}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045131927&doi=10.1002%2fchem.201706049&partnerID=40&md5=5dc310a9e12535e296ba5429250159d3}, doi = {10.1002/chem.201706049}, year = {2018}, date = {2018-01-01}, journal = {Chemistry - A European Journal}, volume = {24}, number = {20}, pages = {5095--5099}, abstract = {Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII-based superoxide dismutase (SOD) mimic ([MnII(L)]+, 1+) as a pro-drug candidate to target CuII-associated events, namely, CuII-induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim}, keywords = {}, pubstate = {published}, tppubtype = {article} } Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII-based superoxide dismutase (SOD) mimic ([MnII(L)]+, 1+) as a pro-drug candidate to target CuII-associated events, namely, CuII-induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Increased Efficiency of Dye-Sensitized Solar Cells by Incorporation of a π Spacer in Donor–Acceptor Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group Article de journal S Panagiotakis; E Giannoudis; A Charisiadis; R Paravatou; M -E Lazaridi; M Kandyli; K Ladomenou; P A Angaridis; H C Bertrand; G D Sharma; A G Coutsolelos European Journal of Inorganic Chemistry, 2018 (20), p. 2369–2379, 2018. @article{Panagiotakis:2018, title = {Increased Efficiency of Dye-Sensitized Solar Cells by Incorporation of a π Spacer in Donor\textendashAcceptor Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group}, author = {S Panagiotakis and E Giannoudis and A Charisiadis and R Paravatou and M -E Lazaridi and M Kandyli and K Ladomenou and P A Angaridis and H C Bertrand and G D Sharma and A G Coutsolelos}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044864237&doi=10.1002%2fejic.201800123&partnerID=40&md5=1a3cfeb98ec9917efc3f7e5dbcd02977}, doi = {10.1002/ejic.201800123}, year = {2018}, date = {2018-01-01}, journal = {European Journal of Inorganic Chemistry}, volume = {2018}, number = {20}, pages = {2369--2379}, abstract = {Two novel porphyrins, ZnP(SP)CNCOOH and ZnPCNCOOH, bearing cyanoacrylic acid as an anchoring group were synthesized. Porphyrin ZnP(SP)CNCOOH contains a π-conjugated spacer (SP) for improved electronic communication between the dye and the TiO2 electrode. The spacer bears polyethylene glycol chains to prevent dye aggregation and to enhance solubility of the dye. Electrochemical measurements and theoretical calculations suggest that both porphyrins are promising sensitizers for dye-sensitized solar cells (DSSCs), as their molecular orbital energy levels favor electron injection and dye regeneration. Solar cells sensitized by ZnP(SP)CNCOOH and ZnPCNCOOH show power conversion efficiencies of 7.61 and 5.02 %, respectively. Photovoltaic measurements (J\textendashV curves and incident photon to current conversion efficiency spectra) show that higher short-circuit current (Jsc) and open-circuit voltage (Voc) values are reached for the solar cell based on ZnP(SP)CNCOOH. This can be mainly ascribed to suppressed charge recombination, as indicated by their electrochemical impedance spectra. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim}, keywords = {}, pubstate = {published}, tppubtype = {article} } Two novel porphyrins, ZnP(SP)CNCOOH and ZnPCNCOOH, bearing cyanoacrylic acid as an anchoring group were synthesized. Porphyrin ZnP(SP)CNCOOH contains a π-conjugated spacer (SP) for improved electronic communication between the dye and the TiO2 electrode. The spacer bears polyethylene glycol chains to prevent dye aggregation and to enhance solubility of the dye. Electrochemical measurements and theoretical calculations suggest that both porphyrins are promising sensitizers for dye-sensitized solar cells (DSSCs), as their molecular orbital energy levels favor electron injection and dye regeneration. Solar cells sensitized by ZnP(SP)CNCOOH and ZnPCNCOOH show power conversion efficiencies of 7.61 and 5.02 %, respectively. Photovoltaic measurements (J–V curves and incident photon to current conversion efficiency spectra) show that higher short-circuit current (Jsc) and open-circuit voltage (Voc) values are reached for the solar cell based on ZnP(SP)CNCOOH. This can be mainly ascribed to suppressed charge recombination, as indicated by their electrochemical impedance spectra. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |