An efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching

Printer-friendly version
TitleAn efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching
Publication TypeJournal Article
Year of Publication2011
AuthorsKong, TF, Shin H, Sugiarto HS, Liew HF, Wang XH, Lew WS, Nguyen NT, Chen Y
JournalMicrofluidics and Nanofluidics
Volume10
Pagination1069-1078
Abstract

The ability to trap, manipulate, and separate magnetic beads has become one of the key requirements in realizing an integrated magnetic lab-on-chip biosensing system. In this article, we present the design and fabrication of an integrated magneto-fluidic device for sorting magnetic particles with a sorting efficiency of up to 95%. The actuation and manipulation of magnetic beads are realized using microfabricated square meandering current-carrying micro striplines. The current is alternated between two neighboring micro striplines to switch the magnetic beads to either one of the two outlets. We performed a series of parametric study to investigate the effect of applied current, flow rate, and switching frequency on the sorting efficiency. Experimental results reveal that the sorting efficiency is proportional to the square of current applied to the stripline, and decreases with increasing buffer flow rate and switching frequency. Such phenomena agree well with our theoretical analysis and simulation result. The fastest switching rate, which is limited by the microchannel geometry and bead velocity, is 2 Hz.

Unit: 
UMR 8640