Post-doctorante
ENS – Département de chimie
24 rue Lhomond, 75005 Paris
Email: alison.tebo@ens.psl.eu
Phone: 0144322410
Office: ES129b
Short bio
Education and professional experience
- 2010 – B.S. UCLA, Biochemistry
- 2015 – Ph.D. University of Michigan, Chemical Biology
Research interests
- List of keywords and themes
Awards and distinctions
- You can also list the membership to professional organizations (SCF, e.g.)
Supervised students and post-doctorants
- Currents and formers
Significant publications
- You can choose the full list of publications (below) or only selected ones
Publications
2023 |
Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity Article de journal L Ludvikova; E Simon; M Deygas; T Panier; M A Plamont; J Ollion; A Tebo; M Piel; L Jullien; L Robert; T Le Saux; A Espagne Nature Biotechnology, p. 12, 2023, ISSN: 1087-0156. @article{RN156, title = {Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity}, author = {L Ludvikova and E Simon and M Deygas and T Panier and M A Plamont and J Ollion and A Tebo and M Piel and L Jullien and L Robert and T Le Saux and A Espagne}, url = {<Go to ISI>://WOS:001042699900001}, doi = {10.1038/s41587-023-01893-7}, issn = {1087-0156}, year = {2023}, date = {2023-01-01}, journal = {Nature Biotechnology}, pages = {12}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2021 |
Orthogonal fluorescent chemogenetic reporters for multicolor imaging Article de journal Alison G Tebo; Benjamien Moeyaert; Marion Thauvin; Irene Carlon-Andres; Dorothea Böken; Michel Volovitch; Sergi Padilla-Parra; Peter Dedecker; Sophie Vriz; Arnaud Gautier Nature Chemical Biology, 17 (1), p. 30–38, 2021, ISSN: 1552-4469. @article{tebo_orthogonal_2021, title = {Orthogonal fluorescent chemogenetic reporters for multicolor imaging}, author = {Alison G Tebo and Benjamien Moeyaert and Marion Thauvin and Irene Carlon-Andres and Dorothea B\"{o}ken and Michel Volovitch and Sergi Padilla-Parra and Peter Dedecker and Sophie Vriz and Arnaud Gautier}, doi = {10.1038/s41589-020-0611-0}, issn = {1552-4469}, year = {2021}, date = {2021-01-01}, journal = {Nature Chemical Biology}, volume = {17}, number = {1}, pages = {30--38}, abstract = {Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy. |
Arnaud Gautier; Ludovic Jullien; Chenge Li; Marie-Aude Plamont; Alison G Tebo; Marion Thauvin; Michel Volovitch; Sophie Vriz Springer US, New York, NY, 2021, ISBN: 978-1-07-161593-5. @book{gautier_versatile_2021, title = {Versatile On-Demand Fluorescent Labeling of Fusion Proteins Using Fluorescence-Activating and Absorption-Shifting Tag (FAST)}, author = {Arnaud Gautier and Ludovic Jullien and Chenge Li and Marie-Aude Plamont and Alison G Tebo and Marion Thauvin and Michel Volovitch and Sophie Vriz}, editor = {Eli Zamir}, url = {https://doi.org/10.1007/978-1-0716-1593-5_16}, doi = {10.1007/978-1-0716-1593-5_16}, isbn = {978-1-07-161593-5}, year = {2021}, date = {2021-01-01}, urldate = {2023-10-31}, booktitle = {Multiplexed Imaging: Methods and Protocols}, pages = {253--265}, publisher = {Springer US}, address = {New York, NY}, series = {Methods in Molecular Biology}, abstract = {Observing the localization, the concentration, and the distribution of proteins in cells or organisms is essential to understand theirs functions. General and versatile methods allowing multiplexed imaging of proteins under a large variety of experimental conditions are thus essential for deciphering the inner workings of cells and organisms. Here, we present a general method based on the non-covalent labeling of a small protein tag, named FAST (fluorescence-activating and absorption-shifting tag), with various fluorogenic ligands that light up upon labeling, which makes the simple, robust, and versatile on-demand labeling of fusion proteins in a wide range of experimental systems possible.}, keywords = {}, pubstate = {published}, tppubtype = {book} } Observing the localization, the concentration, and the distribution of proteins in cells or organisms is essential to understand theirs functions. General and versatile methods allowing multiplexed imaging of proteins under a large variety of experimental conditions are thus essential for deciphering the inner workings of cells and organisms. Here, we present a general method based on the non-covalent labeling of a small protein tag, named FAST (fluorescence-activating and absorption-shifting tag), with various fluorogenic ligands that light up upon labeling, which makes the simple, robust, and versatile on-demand labeling of fusion proteins in a wide range of experimental systems possible. |
2020 |
A Far-Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging Article de journal Chenge Li; Alison G Tebo; Marion Thauvin; Marie-Aude Plamont; Michel Volovitch; Xavier Morin; Sophie Vriz; Arnaud Gautier Angewandte Chemie International Edition, 59 (41), p. 17917–17923, 2020, ISSN: 1521-3773, (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202006576). @article{li_far-red_2020, title = {A Far-Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging}, author = {Chenge Li and Alison G Tebo and Marion Thauvin and Marie-Aude Plamont and Michel Volovitch and Xavier Morin and Sophie Vriz and Arnaud Gautier}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202006576}, doi = {10.1002/anie.202006576}, issn = {1521-3773}, year = {2020}, date = {2020-01-01}, urldate = {2023-10-31}, journal = {Angewandte Chemie International Edition}, volume = {59}, number = {41}, pages = {17917--17923}, abstract = {Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein\textendashprotein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors.}, note = {_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202006576}, keywords = {}, pubstate = {published}, tppubtype = {article} } Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein–protein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors. |
2019 |
A split fluorescent reporter with rapid and reversible complementation Article de journal Alison G Tebo; Arnaud Gautier Nature Communications, 10 (1), p. 2822, 2019, ISSN: 2041-1723. @article{Tebo2019, title = {A split fluorescent reporter with rapid and reversible complementation}, author = {Alison G Tebo and Arnaud Gautier}, url = {https://doi.org/10.1038/s41467-019-10855-0}, doi = {10.1038/s41467-019-10855-0}, issn = {2041-1723}, year = {2019}, date = {2019-01-01}, journal = {Nature Communications}, volume = {10}, number = {1}, pages = {2822}, abstract = {Interactions between proteins play an essential role in metabolic and signaling pathways, cellular processes and organismal systems. We report the development of splitFAST, a fluorescence complementation system for the visualization of transient protein-protein interactions in living cells. Engineered from the fluorogenic reporter FAST (Fluorescence-Activating and absorption-Shifting Tag), which specifically and reversibly binds fluorogenic hydroxybenzylidene rhodanine (HBR) analogs, splitFAST displays rapid and reversible complementation, allowing the real-time visualization of both the formation and the dissociation of a protein assembly.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Interactions between proteins play an essential role in metabolic and signaling pathways, cellular processes and organismal systems. We report the development of splitFAST, a fluorescence complementation system for the visualization of transient protein-protein interactions in living cells. Engineered from the fluorogenic reporter FAST (Fluorescence-Activating and absorption-Shifting Tag), which specifically and reversibly binds fluorogenic hydroxybenzylidene rhodanine (HBR) analogs, splitFAST displays rapid and reversible complementation, allowing the real-time visualization of both the formation and the dissociation of a protein assembly. |
2018 |
Circularly Permuted Fluorogenic Proteins for the Design of Modular Biosensors Article de journal A G Tebo; F M Pimenta; M Zoumpoulaki; C Kikuti; H Sirkia; M -A Plamont; A Houdusse; A Gautier ACS Chemical Biology, 13 (9), p. 2392–2397, 2018. @article{Tebo:2018, title = {Circularly Permuted Fluorogenic Proteins for the Design of Modular Biosensors}, author = {A G Tebo and F M Pimenta and M Zoumpoulaki and C Kikuti and H Sirkia and M -A Plamont and A Houdusse and A Gautier}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052286419&doi=10.1021%2facschembio.8b00417&partnerID=40&md5=f7f8a46015d14cb7450f3d6d2b70a529}, doi = {10.1021/acschembio.8b00417}, year = {2018}, date = {2018-01-01}, journal = {ACS Chemical Biology}, volume = {13}, number = {9}, pages = {2392--2397}, abstract = {Fluorescent reporters are essential components for the design of optical biosensors that are able to image intracellular analytes in living cells. Herein, we describe the development of circularly permuted variants of Fluorescence-Activating and absorption-Shifting Tag (FAST) and demonstrate their potential as reporting module in biosensors. Circularly permutated FAST (cpFAST) variants allow one to condition the binding and activation of a fluorogenic ligand (and thus fluorescence) to analyte recognition by coupling them with analyte-binding domains. We demonstrated their use for biosensor design by generating multicolor plug-and-play fluorogenic biosensors for imaging the intracellular levels of Ca2+ in living mammalian cells in real time. © 2018 American Chemical Society.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Fluorescent reporters are essential components for the design of optical biosensors that are able to image intracellular analytes in living cells. Herein, we describe the development of circularly permuted variants of Fluorescence-Activating and absorption-Shifting Tag (FAST) and demonstrate their potential as reporting module in biosensors. Circularly permutated FAST (cpFAST) variants allow one to condition the binding and activation of a fluorogenic ligand (and thus fluorescence) to analyte recognition by coupling them with analyte-binding domains. We demonstrated their use for biosensor design by generating multicolor plug-and-play fluorogenic biosensors for imaging the intracellular levels of Ca2+ in living mammalian cells in real time. © 2018 American Chemical Society. |
Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle Article de journal Alison G Tebo; Tyler B J Pinter; Ricardo García-Serres; Amy L Speelman; Cédric Tard; Olivier Sénèque; Geneviève Blondin; Jean-Marc Latour; James Penner-Hahn; Nicolai Lehnert; Vincent L Pecoraro Biochemistry, 57 (16), p. 2308-2316, 2018. @article{Tebo:2018b, title = {Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle}, author = {Alison G Tebo and Tyler B J Pinter and Ricardo {Garc\'{i}a-Serres} and Amy L Speelman and C\'{e}dric Tard and Olivier S\'{e}n\`{e}que and Genevi\`{e}ve Blondin and Jean-Marc Latour and James {Penner-Hahn} and Nicolai Lehnert and Vincent L Pecoraro}, doi = {10.1021/acs.biochem.8b00091}, year = {2018}, date = {2018-03-01}, journal = {Biochemistry}, volume = {57}, number = {16}, pages = {2308-2316}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Fluorogenic Protein-Based Strategies for Detection, Actuation, and Sensing Article de journal A Gautier; A G Tebo BioEssays, 40 (10), 2018. @article{Gautier:2018, title = {Fluorogenic Protein-Based Strategies for Detection, Actuation, and Sensing}, author = {A Gautier and A G Tebo}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053180336&doi=10.1002%2fbies.201800118&partnerID=40&md5=92409e91810fa2bf17d3eef357bc1bc9}, doi = {10.1002/bies.201800118}, year = {2018}, date = {2018-01-01}, journal = {BioEssays}, volume = {40}, number = {10}, abstract = {Fluorescence imaging has become an indispensable tool in cell and molecular biology. GFP-like fluorescent proteins have revolutionized fluorescence microscopy, giving experimenters exquisite control over the localization and specificity of tagged constructs. However, these systems present certain drawbacks and as such, alternative systems based on a fluorogenic interaction between a chromophore and a protein have been developed. While these systems are initially designed as fluorescent labels, they also present new opportunities for the development of novel labeling and detection strategies. This review focuses on new labeling protocols, actuation methods, and biosensors based on fluorogenic protein systems. © 2018 WILEY Periodicals, Inc.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Fluorescence imaging has become an indispensable tool in cell and molecular biology. GFP-like fluorescent proteins have revolutionized fluorescence microscopy, giving experimenters exquisite control over the localization and specificity of tagged constructs. However, these systems present certain drawbacks and as such, alternative systems based on a fluorogenic interaction between a chromophore and a protein have been developed. While these systems are initially designed as fluorescent labels, they also present new opportunities for the development of novel labeling and detection strategies. This review focuses on new labeling protocols, actuation methods, and biosensors based on fluorogenic protein systems. © 2018 WILEY Periodicals, Inc. |
Improved Chemical-Genetic Fluorescent Markers for Live Cell Microscopy Article de journal A G Tebo; F M Pimenta; Y Zhang; A Gautier Biochemistry, 57 (39), p. 5648–5653, 2018. @article{Tebo:2018a, title = {Improved Chemical-Genetic Fluorescent Markers for Live Cell Microscopy}, author = {A G Tebo and F M Pimenta and Y Zhang and A Gautier}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053681817&doi=10.1021%2facs.biochem.8b00649&partnerID=40&md5=550c3f9cf88557339074b67771afd7d7}, doi = {10.1021/acs.biochem.8b00649}, year = {2018}, date = {2018-01-01}, journal = {Biochemistry}, volume = {57}, number = {39}, pages = {5648--5653}, abstract = {Inducible chemical-genetic fluorescent markers are promising tools for live cell imaging requiring high spatiotemporal resolution and low background fluorescence. The fluorescence-activating and absorption shifting tag (FAST) was recently developed to form fluorescent molecular complexes with a family of small, synthetic fluorogenic chromophores (so-called fluorogens). Here, we use rational design to modify the binding pocket of the protein and screen for improved fluorescence performances with four different fluorogens. The introduction of a single mutation results in improvements in both quantum yield and dissociation constant with nearly all fluorogens tested. Our improved FAST (iFAST) allowed the generation of a tandem iFAST (td-iFAST) that forms green and red fluorescent reporters 1.6-fold and 2-fold brighter than EGFP and mCherry, respectively, while having a comparable size. © Copyright 2018 American Chemical Society.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Inducible chemical-genetic fluorescent markers are promising tools for live cell imaging requiring high spatiotemporal resolution and low background fluorescence. The fluorescence-activating and absorption shifting tag (FAST) was recently developed to form fluorescent molecular complexes with a family of small, synthetic fluorogenic chromophores (so-called fluorogens). Here, we use rational design to modify the binding pocket of the protein and screen for improved fluorescence performances with four different fluorogens. The introduction of a single mutation results in improvements in both quantum yield and dissociation constant with nearly all fluorogens tested. Our improved FAST (iFAST) allowed the generation of a tandem iFAST (td-iFAST) that forms green and red fluorescent reporters 1.6-fold and 2-fold brighter than EGFP and mCherry, respectively, while having a comparable size. © Copyright 2018 American Chemical Society. |
Macroscale fluorescence imaging against autofluorescence under ambient light Article de journal R Zhang; R Chouket; M -A Plamont; Z Kelemen; A Espagne; A G Tebo; A Gautier; L Gissot; J -D Faure; L Jullien; V Croquette; T Le Saux Light: Science and Applications, 7 (1), 2018. @article{Zhang:2018c, title = {Macroscale fluorescence imaging against autofluorescence under ambient light}, author = {R Zhang and R Chouket and M -A Plamont and Z Kelemen and A Espagne and A G Tebo and A Gautier and L Gissot and J -D Faure and L Jullien and V Croquette and T Le Saux}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058077105&doi=10.1038%2fs41377-018-0098-6&partnerID=40&md5=958a21f219ba413e687d1860d21c2767}, doi = {10.1038/s41377-018-0098-6}, year = {2018}, date = {2018-01-01}, journal = {Light: Science and Applications}, volume = {7}, number = {1}, abstract = {Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging. © 2018, The Author(s).}, keywords = {}, pubstate = {published}, tppubtype = {article} } Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging. © 2018, The Author(s). |
Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity Article de journal Karl J Koebke; Fangting Yu; Elvin Salerno; Casey Van Stappen; Alison G Tebo; James E Penner-Hahn; Vincent L Pecoraro Angewandte Chemie International Edition, 57 (15), p. 3954-3957, 2018. @article{Koebke:2018a, title = {Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity}, author = {Karl J Koebke and Fangting Yu and Elvin Salerno and Casey Van Stappen and Alison G Tebo and James E {Penner-Hahn} and Vincent L Pecoraro}, doi = {10.1002/anie.201712757}, year = {2018}, date = {2018-01-01}, journal = {Angewandte Chemie International Edition}, volume = {57}, number = {15}, pages = {3954-3957}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2017 |
Discovery of Chemoautotrophic Symbiosis in the Giant Shipworm Kuphus Polythalamia(Bivalvia: Teredinidae) Extends Wooden-Steps Theory Article de journal Daniel L Distel; Marvin A Altamia; Zhenjian Lin; Reuben J Shipway; Andrew Han; Imelda Forteza; Rowena Antemano; Ma Gwen Pe~naflor J Limbaco; Alison G Tebo; Rande Dechavez; Julie Albano; Gary Rosenberg; Gisela P Concepcion; Eric W Schmidt; Margo G Haygood Proceedings of the National Academy of Sciences, 114 (18), p. E3652-E3658, 2017. @article{Distel:2017, title = {Discovery of Chemoautotrophic Symbiosis in the Giant Shipworm Kuphus Polythalamia(Bivalvia: Teredinidae) Extends Wooden-Steps Theory}, author = {Daniel L Distel and Marvin A Altamia and Zhenjian Lin and Reuben J Shipway and Andrew Han and Imelda Forteza and Rowena Antemano and Ma Gwen Pe{~n}aflor J Limbaco and Alison G Tebo and Rande Dechavez and Julie Albano and Gary Rosenberg and Gisela P Concepcion and Eric W Schmidt and Margo G Haygood}, doi = {10.1073/pnas.1620470114}, year = {2017}, date = {2017-05-01}, journal = {Proceedings of the National Academy of Sciences}, volume = {114}, number = {18}, pages = {E3652-E3658}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Fluorogenic labeling strategies for biological imaging Article de journal C Li; A G Tebo; A Gautier International Journal of Molecular Sciences, 18 (7), 2017. @article{Li:2017b, title = {Fluorogenic labeling strategies for biological imaging}, author = {C Li and A G Tebo and A Gautier}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023628010&doi=10.3390%2fijms18071473&partnerID=40&md5=d7fc35685b4a7cb4def13c1a52a66d92}, doi = {10.3390/ijms18071473}, year = {2017}, date = {2017-01-01}, journal = {International Journal of Molecular Sciences}, volume = {18}, number = {7}, abstract = {The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark. Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the development of sophisticated imaging assays, and open exciting prospects for advanced imaging, particularly for multiplexed imaging and super-resolution microscopy. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark. Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the development of sophisticated imaging assays, and open exciting prospects for advanced imaging, particularly for multiplexed imaging and super-resolution microscopy. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. |
Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein Article de journal Alison G Tebo; Annamaria Quaranta; Christian Herrero; Vincent L Pecoraro; Ally Aukauloo ChemPhotoChem, 1 (3), p. 89-92, 2017. @article{Tebo:2017, title = {Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein}, author = {Alison G Tebo and Annamaria Quaranta and Christian Herrero and Vincent L Pecoraro and Ally Aukauloo}, doi = {10.1002/cptc.201600044}, year = {2017}, date = {2017-02-01}, journal = {ChemPhotoChem}, volume = {1}, number = {3}, pages = {89-92}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2015 |
Artificial Metalloenzymes Derived from Three-Helix Bundles. Article de journal Alison G Tebo; Vincent L Pecoraro Current Opinion in Chemical Biology, 25C , p. 65-70, 2015. @article{Tebo:2015a, title = {Artificial Metalloenzymes Derived from Three-Helix Bundles.}, author = {Alison G Tebo and Vincent L Pecoraro}, doi = {10.1016/j.cbpa.2014.12.034}, year = {2015}, date = {2015-01-01}, journal = {Current Opinion in Chemical Biology}, volume = {25C}, pages = {65-70}, abstract = {Three-helix bundles and coiled-coil motifs are well-established de novo designed scaffolds that have been investigated for their metal-binding and catalytic properties. Satisfaction of the primary coordination sphere for a given metal is sufficient to introduce catalytic activity and a given structure may catalyze different reactions dependent on the identity of the incorporated metal. Here we describe recent contributions in the de novo design of metalloenzymes based on three-helix bundles and coiled-coil motifs, focusing on non-heme systems for hydrolytic and redox chemistry.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Three-helix bundles and coiled-coil motifs are well-established de novo designed scaffolds that have been investigated for their metal-binding and catalytic properties. Satisfaction of the primary coordination sphere for a given metal is sufficient to introduce catalytic activity and a given structure may catalyze different reactions dependent on the identity of the incorporated metal. Here we describe recent contributions in the de novo design of metalloenzymes based on three-helix bundles and coiled-coil motifs, focusing on non-heme systems for hydrolytic and redox chemistry. |