Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites

06 January 2017

Selective dinitrogen binding to transition metal ions mainly covers two strategic domains: biological nitrogen fixation catalysed by metalloenzyme nitrogenases, and adsorptive purification of natural gas and air. Many transition metal–dinitrogen complexes have been envisaged for biomimetic nitrogen fixation to produce ammonia. Inspired by this concept, herewe report mesoporous metal–organic framework materials containing accessible Cr(III) sites, able to thermodynamically capture N2 over CH4 and O2. This fundamental study integrating advanced experimental and computational tools confirmed that the separation mechanism for both N2/CH4 and N2/O2 gas mixtures is driven by the presence of these unsaturated Cr(III) sites that allows a much stronger binding of N2 over the two other gases. Besides the potential breakthrough in adsorption-based technologies, this proof of concept could open newhorizons to address several challenges in chemistry, including the design of heterogeneous biomimetic catalysts through nitrogen

 

N’hésitez pas à consulter le communiqué de presse associé à cet article :
Purifier le gaz naturel ou l’air avec un matériau nanoporeux !

 

References:
Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites
JiWoong Yoon, Hyunju Chang, Seung-Joon Lee, Young Kyu Hwang, Do-Young Hong, Su-Kyung Lee, Ji Sun Lee, Seunghun Jang, Tae-Ung Yoon, Kijeong Kwac, Yousung Jung, Renjith S. Pillai, Florian Faucher, Alexandre Vimont, Marco Daturi, Gérard Férey, Christian Serre, Guillaume Maurin, Youn-Sang Bae and Jong-San Chang
Nature Materials, 19 décembre 2016
doi : 10.1038/nmat4825

Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites