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Outils mathématiques pour la physique et la chimie

Introduction

Ce document est un rappel de notions de mathématiques “de base” (i.e. niveau
L1/L2). Ce n’est en aucun cas un cours complet et rigoureux, mais plutôt une liste
d’outils mathématiques dont vous aurez besoin un jour ou l’autre, aussi bien en physique
qu’en chimie. J’y rappelle donc ce que je pense être utile. Pour réaliser ce support, je
me suis essentiellement servi des deux livres de Xavier Gourdon Algèbre et Analyse de
la collection “les maths en tête” chez Ellipses (trouvables à la bibliothèque) ainsi que
de Wikipedia.

1 Généralités d’algèbre linéaire

1.1 Espaces vectoriels

Dans la mesure où nous allons parler d’espaces vectoriels par la suite, nous devons
rappeller certaines définitions déjà connues qui permettent d’en parler proprement.

Définition 1 On appelle ‘groupe’ un ensemble G muni d’une loi interne * telle que :

1. La loi * est associative : ∀ (x, y, z) ∈ G3, (x ∗ y) ∗ z = x ∗ (y ∗ z)

2. Il existe un élement neutre e : ∀ x ∈ G, x ∗ e = e ∗ x = x

3. Tout élement a un symétrique : ∀ x ∈ G, ∃ y ∈ G tel que x ∗ y = y ∗ x = e

On démontre assez facilement que l’élement neutre est unique. Si la loi * est commuta-
tive on parle de groupe commutatif.

Définition 2 On appelle ‘espace vectoriel sur le corps K’ (noté K-ev) un ensemble E
muni d’une loi interne (notée +) et d’une loi externe (notée ·) vérifiant :

1. (E, +) est un groupe commutatif

2. ∀ (x, y) ∈ E2, ∀ (λ, µ) ∈ K
2 :

– λ · (x + y) = λ · x + λ · y
– (λ + µ) · x = λ · x + µ · x
– λ · (µ · x) = (λµ) · x
– 1 · x = x

Le corps K est typiquement R ou C pour nous. On constate que λ ·x = 0 si et seulement
si λ = 0 ou x = 0.

Définition 3 On appelle les élements de E des vecteurs, et ceux de K des scalaires.
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Rien de tel que quelques exemples pour clarifier les idées. Sont des espaces vectoriels :
– R, R2, R3 et plus généralement K

n (les vecteurs sont alors des n-uplets)
– Mp,q(K) qui est l’ensemble des matrices p× q à coefficients dans K

– K[X] qui est l’ensemble des polynômes à coefficients dans K

– L’espace des fonctions et bien d’autres encore . . .

Définition 4 Soit (E, +, ·) un K-ev et F ⊂ E. On dit que F est un sous espace
vectoriel (noté sev) de E si (F , +, ·) est un K-ev.

En pratique, pour montrer qu’un ensemble est un ev, on montre plutôt que c’est un sev
d’un ev connu.

Proposition 5 Soit (E, +, ·) un K-ev et F ⊂ E. Alors (F , +, ·) est un sev de E si
et seulement si :

1. F 6= ∅

2. ∀ (x, y) ∈ F 2, ∀ (λ, µ) ∈ K
2, λ · x + µ · y ∈ F

1.2 Bases d’espaces vectoriels

La notion de base est une notion centrale dans la compréhension de nombreux
processus qu’il faut mâıtriser. Elle fait appel à deux notions, les familles génératrices et
les familles libres.

Définition 6 Soit (xi)i∈I une famille de vecteurs d’un K-ev E et soit A ⊂ E. On note
V ect(xi)i∈I l’ensemble des combinaisons linéaires des (xi)i∈I c’est-à-dire l’ensemble des
∑

i∈I λixi pour tout λi. On dit que A est une partie génératrice de E si V ect(a)a∈A = E.
(Il est immédiat que V ect(xi)i∈I est un sev de E)

Dit différemment, si A est une partie génératrice de E, on peut écrire n’importe quel
élément de E comme une combinaison linéaire d’élements de A.

Définition 7 Une famille est dite libre (ou non liée) si aucun des vecteurs de la famille
n’est une combinaison linéaire des autres vecteurs, ce qui est équivalent à dire que
∑

i∈I λixi = 0⇒ ∀ i, λi = 0.

Exemple : la famille des (xn)n∈N est libre : on ne peut pas écrire x3 comme combinaison
linéaire des (xn)n∈N, n6=3.

Définition 8 Une famille libre et génératrice d’un ev E est appelée une base de E.

Proposition 9 Soit E un K-ev admettant une base (ei)i∈I . Alors tout vecteur x de E
s’écrit de manière unique comme combinaison linéaire des (ei)i∈I : x =

∑

i∈I λixi. Les
(λi)i∈I s’appellent les coordonnées de x dans la base (ei)i∈I .

Le fait qu’on puisse écrire décomposer tout vecteur de E sur la base vient du caractère
générateur, et le fait que l’écriture soit unique vient du caractère libre.

Définition 10 On dit qu’un K-ev E est de dimension finie s’il existe une famille
génératrice finie de E.
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Proposition 11 On peut montrer que :
– Tout K-ev de dimension finie admet une base
– De toute famille génératrice de E on peut extraire une base de E
– Toute partie libre peut être complétée en une base

Il est important de bien garder en tête qu’un même espace vectoriel peut avoir plusieurs
bases, i.e. qu’un vecteur peut se décomposer de différentes façons. Regardons l’espace
des polynômes : (1, x, x2, x3, ..., xn, ...) est une base, mais (1 − x, 1 + x, x2 − x3, x2 +
x3, ..., x2n − x2n+1, x2n + x2n+1, ...) en est une autre.

1.3 Applications linéaires

Définition 12 Soient E et F deux K-ev et f : E → F une application. On dit que f est
linéaire si ∀ (x, y) ∈ E2, ∀ (λ, µ) ∈ K

2, f(λx + µy) = λf(x) + µf(y). Si E=F on dit
que f est un endomorphisme.

La dérivation ou l’intégration d’une fonction sont par exemple des applications linéaires.

2 Matrice

2.1 Généralités

Définition 13 Soient (p, q) ∈ N
∗. On appelle matrice de type (p,q) à coefficients dans

K, toute famille (ai,j)16i6p, 16j6q avec ∀ (i, j), ai,j ∈ K. On la note :

A =











a1,1 a1,2 . . . a1,q

a2,1 a2,2 . . . a2,q
...

...
. . .

...
ap,1 ap,2 . . . ap,q











Les matrices sont particulièrement utiles pour représenter des applications linéaires.
Soient E et F deux K-ev de dimension finie (dim E = q, dim F = p) ; soit h : E → F
une application linéaire de E dans F. Soient BE = (e1, . . . , eq) une base de E et BF =
(f1, . . . , fp) une base de F. Pour tout j (1 6 j 6 q), on peut écrire f(ej) =

∑p
i=1 ai,j · fi

avec ai,j ∈ K. On peut regrouper tous les coefficients ai,j dans une matrice A, où la
j-ème colonne représente les coordonnées dans BF de l’image du j-ème élément de BE.

Comme on l’a dit, un ev peut avoir plusieurs bases. Une application linéaire a donc
plusieurs représentations matricielles selon les bases choisies pour E et pour F. Nous
revenons sur ce point un peu plus loin.

Définition 14 Soient (p,q,r) ∈ (N∗)3 et A = (ai,j)16i6p, 16j6q ∈ Mp,q(K), B =
(bi,j)16i6q, 16j6r ∈ Mq,r(K). On définit la matrice C = (ci,j)16i6p, 16j6r ∈ Mp,r(K)
par ci,j =

∑q
k=1 ai,k · bk,j. La matrice C est appelée produit des matrices A et B et on

note C=AB.

Dans l’exemple suivant, c1,1 est égale à a1,1b1,1 + a1,2b1,2 + . . . + a1,qb1,r par exemple.

3













b1,1 b1,2 . . . b1,r

b2,1 b2,2 . . . b2,r
...

...
. . .

...
bq,1 bq,2 . . . bq,r











AB =











a1,1 a1,2 . . . a1,q

a2,1 a2,2 . . . a2,q
...

...
. . .

...
ap,1 ap,2 . . . ap,q











Le produit AB de deux matrices n’est faisable que si le nombre de lignes de B est égal
au nombre de colonnes de A. Il est donc évident que le produit est associatif mais pas
commutatif. De plus si une matrice est définit par bloc, on peut faire le produit par
bloc. Si M et M’ s’écrivent :

M =

(

A B
C D

)

, et M ′ =

(

A′ B′

C ′ D′

)

avec : A, C à r colonnes ; B, D à q-r colonnes ; A’, B’ à r lignes ; C’, D’ à q-r lignes.
Alors :

MM ′ =

(

AA′ + BC ′ AB′ + BD′

CA′ + DC ′ CB′ + DD′

)

Le produit s’effectue donc comme avec des scalaires en faisant attention à la non-
commutativité du produit de matrices.

Exemple 1





1 3 2
5 6 7
4 2 5



 ·





4 0 9
1 7 2
2 5 6



 =





4 + 3 + 4 0 + 21 + 10 9 + 6 + 12
20 + 6 + 14 0 + 42 + 35 45 + 12 + 42
16 + 2 + 10 0 + 14 + 25 36 + 4 + 30





=





11 31 27
40 77 99
28 39 70





Définition 15 Soit A = (ai,j)16i6p, 16j6q ∈ Mp,q(K). On appelle matrice transposée
de A (noté tA) la matrice B = (bi,j)16i6q, 16j6p ∈Mq,p(K) avec ai,j = bi,j.

Si la matrice est carré, tA s’écrit en faisant le symétrique de A par rapport à la diagonale.

Définition 16 Soit A ∈ Mn,n(K). A est dite inversible s’il existe une matrice B telle
que AB = BA = In où In est la matrice identité (des 1 sur la diagonale, des 0 partout
ailleurs). On note alors B = A−1.

La matrice A−1 représente l’application linéaire réciproque. Par exemple pour l’appli-
cation f : x→ √x, l’application réciproque est f : x→ x2.

Définition 17 Soient A,B ∈ Mn,n(K). A et B sont dites semblables si elles représentent
le même endomorphisme dans des bases différentes. On peut alors écrire A = PBP−1

où P est une matrice inversible (matrice dite de changement de base).
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Des matrices semblables ont de nombreuses propriétés communes puisqu’elles représentent
le même objet. La matrice de changement de base P s’appelle aussi matrice de passage
de la base initiale à la nouvelle base. On l’écrit en colonne, la i-ème colonne de la ma-
trice de passage étant le i-ème vecteur de la nouvelle base, écrit dans l’ancienne base.
C’est donc aussi la matrice de l’application identité, de l’espace E muni de la nouvelle
base vers E muni de l’ancienne base.

Définition 18 Soit A = (ai,j)16i,j6n ∈ Mn,n(K). On appelle trace de A le scalaire
tr(A) =

∑n
i=1 ai,i i.e. la somme des élements diagonaux (valable que pour une matrice

carrée).

Proposition 19 On peut montrer que :
– Si A,B ∈ Mn,n(K), tr(AB) = tr(BA)
– Si A ∈ Mn,n(K), tr(A) = tr(tA)
– Si A et B ∈ Mn,n(K) sont semblables, alors tr(A)=tr(B)

2.2 Déterminants

Avant de parler de valeurs propres, on va un peu parler de déterminants. En effet,
en pratique, en physique ou en chimie, la recherche de valeurs propres passe souvent par
un calcul de déterminants. Nous ne donnerons pas ici de définition d’un déterminant
puisque ceci ferait intervenir trop de notions supplémentaires. On commence par rap-
peller que :

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− cb

Proposition 20 Il est bon de rappeller quelques points sur la manipulation des déterminants
(tout ce qui est dit sur les lignes est valable pour les colonnes puisque det(A) = det(tA)) :

– Si deux lignes d’un déterminant sont égales, le déterminant vaut 0
– Si on inverse deux lignes d’un déterminant, on change son signe
– On ne change pas un déterminant si on ajoute à la ligne i, λ fois la ligne j
– Si une ligne est combinaison linéaire des autres lignes, le déterminant vaut 0

(conséquences des propriétés précédentes)
– On peut développer un déterminant selon les lignes : pour A = (ai,j)16i,j6n ∈
Mn,n(K), on définit Ap,q la matrice issue de A où on a enlevé la p-ème ligne
et la q-ème colonne (c’est donc une matrice (n-1)·(n-1)) ; on a alors det(A) =
∑n

p=1(−1)α ·ap,q ·det(Ap,q) où α est le nombre de permutations de lignes qu’il faut
faire pour amener ap,q en première ligne : si p est impaire α est pair, si p est pair
α est impair. Un exemple vaut mieux qu’un long discours :

∣

∣

∣

∣

∣

∣

a b c
d e f
g h i

∣

∣

∣

∣

∣

∣

= a

∣

∣

∣

∣

e f
h i

∣

∣

∣

∣

− b

∣

∣

∣

∣

d f
g i

∣

∣

∣

∣

+ c

∣

∣

∣

∣

d e
g h

∣

∣

∣

∣

On voit ainsi qu’on peut se servir des déterminants pour étudier des systèmes ou des en-
sembles de vecteurs. Si on considère n vecteurs dans un espace à n dimensions, et qu’on
veut savoir s’ils peuvent former une base de l’espace, il suffit de calculer le déterminant
de ces n vecteurs i.e. le déterminant de la matrice où on écrit sur la i-ème colonne le
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i-ème vecteur. Si le déterminant est non nul (quelque soit sa valeur), cela signifie que
ces vecteurs ne sont pas liés, ils forment donc une famille libre de même dimension que
l’espace i.e. une base.

Proposition 21 Si une matrice est diagonale par bloc, alors son déterminant est le
produit des blocs diagonaux. Pour la matrice M suivante :

M =





A B C
0 D E
0 0 F





où A, B, C, D, E, F sont des matrices, alors det(M) = det(A) det(D) det(F ).

Exemple 2 On cherche à calculer D, avec :

D =

∣

∣

∣

∣

∣

∣

b + a b− a− c b
−c 2a 2a
2c 2c −a + c

∣

∣

∣

∣

∣

∣

Il faut dans ces cas là faire des opérations sur les lignes et les colonnes pour faire
apparâıtre des 0, si possible avoir une ligne ou une colonne avec que des 0 sauf à 1
endroit. On peux alors développer le déterminant par rapport à cette ligne/colonne.
Ici on commence par faire l’opération L1 ← L1 + L2 + L3. D’où :

D =

∣

∣

∣

∣

∣

∣

a + b + c a + b + c a + b + c
−c 2a 2a
2c 2c −a + c

∣

∣

∣

∣

∣

∣

On peut mettre (a + b + c) en facteur, et après on fait l’opération C3 ← C3 − C2 :

D = (a + b + c)

∣

∣

∣

∣

∣

∣

1 1 1
−c 2a 2a
2c 2c −a + c

∣

∣

∣

∣

∣

∣

= (a + b + c)

∣

∣

∣

∣

∣

∣

1 1 0
−c 2a 0
2c 2c −a− c

∣

∣

∣

∣

∣

∣

On peut donc développer par rapport à la dernière colonne :

D = 0 + 0 + (a + b + c)(−a− c)

∣

∣

∣

∣

1 1
−c 2a

∣

∣

∣

∣

= −(a + b + c)(a + c)(2a + c)

2.3 Valeurs propres, vecteurs propres

Définition 22 Soit f une application linéaire. On appelle valeur propre un scalaire λ
qui vérifie f(x) = λx avec x 6= 0 ; le vecteur x associé s’appelle vecteur propre. En
utilisant l’écriture matricielle cela se note AX = λX. La recherche des valeurs propres
est un problème centrale en mécanique quantique par exemple.

Définition 23 Diagonaliser une application linéaire consiste à rechercher une base
de l’espace vectoriel considéré constituée de vecteurs propres pour l’endomorphisme.
L’écriture matricielle de l’endomorphisme dans cette base est alors une matrice diago-
nale avec les valeurs propres sur la diagonale et des 0 partout ailleurs. En effet, on a
alors f(ei) = λiei en notant ei le i-ème élement de la base de vecteurs propres et on
aura donc λi sur la diagonale de la matrice, et des 0 sur le reste de la ligne.
Un endomorphisme est dit diagonalisable si et seulement si il existe une base de vecteurs
propres pour cette endomorphisme.
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Proposition 24 Soit E un espace vectoriel de dimension finie égale à n ∈ N∗, et f est
un endormorphisme de E d’écriture matricielle A dans une base donnée. On a vu que
si λ est une valeur propre de A, AX = λX ; on a donc (A − λIn)X = 0 (où In est
la matrice identité). Une façon de trouver les valeurs propres est donc de résoudre le
système d’équation : det(A − λIn) = 0 ; en développant le déterminant on trouve un
polynôme et l’équation s’appelle alors équation caractéristique. Quand on a trouvé une
valeur propre λ0, pour trouver le vecteur propre associé il suffit de re-injecter λ0 dans
le système.

Exemple 3 On cherche les valeurs propres de :

A =

(

1 2
3 4

)

On cherche en premier lieu l’équation caractéristique :

det(A− xId) =

∣

∣

∣

∣

1− x 2
3 4− x

∣

∣

∣

∣

= (1− x)(4− x)− 6 = x2 − 5x + 4− 6

On cherche donc à résoudre : x2−5x−2 = 0. On trouve 2 solutions qui sont les valeurs
propres et qui sont donc x = (5±

√
33)/2.

On ne perd jamais rien à vérifier ses calculs. La somme des valeurs propres est égale à
la trace de la matrice et est indépendante de la base. La somme des valeurs propres doit
donc être égale à tr(A), ce qui est le cas ici et vaut 5. Le produit des valeurs propres est
quant à lui égale au déterminant de la matrice A. Ici ce produit vaut (25− 33)/4 = −2
et est bien égal à 4− 6.

Exemple 4 On cherche les valeurs propres de A (avec m réel) :

A =





m 1 1
1 m 1
1 1 m





On cherche là encore l’équation caractéristique. On va poser u = m− x pour simplifier
les calculs. On commence par faire C3 ← C3 − C2 :

det(A− xId) =

∣

∣

∣

∣

∣

∣

u 1 1
1 u 1
1 1 u

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

u 1 0
1 u 1− u
1 1 u− 1

∣

∣

∣

∣

∣

∣

= (1− u)

∣

∣

∣

∣

∣

∣

u 1 0
1 u 1
1 1 −1

∣

∣

∣

∣

∣

∣

Puis on fait L2 ← L2 + L3, et on développe par rapport à la 3ème colonne :

det(A−xId) = (1−u)

∣

∣

∣

∣

∣

∣

u 1 0
2 u + 1 0
1 1 −1

∣

∣

∣

∣

∣

∣

= (1−u)(−1)

∣

∣

∣

∣

u 1
2 u + 1

∣

∣

∣

∣

= (u−1)(u2+u−2)

Le polynôme s’annule pour 1, 1,−2. Les valeurs propres sont donc m− 1,m− 1,m + 2.

Proposition 25 On a vu que si A et B sont semblables, A = PBP−1. Si A est dia-
gonalisable, A est semblable avec sa matrice diagonalisé D. On a donc A = PDP−1.
Vu ce qu’on a dit précedemment, la i-ème colonne de la matrice de passage est le i-ème
vecteur propre de A écrit dans la base de départ. On trouvera alors en i-ème place de
la matrice diagonale le vecteur propre associé.
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Proposition 26 Si f est un endormorphisme de E et si E est de dimension finie égale
à n ∈ N∗, alors f a au plus n valeurs propres. Si f est diagonalisable, f a exactement n
valeurs propres (certaines pouvant être redondantes) et on a alors det f =

∏n
i=1 λi où

les n λi sont les valeurs propres.

Proposition 27 On appelle sous-espace propre associé à une valeur propre λ l’en-
semble des {X} vérifiant AX = λX.

Proposition 28 En dimension n, si une matrice a n valeurs propres différentes, elle est
diagonalisable. Si certaines valeurs propres apparaissent plusieurs fois, on dit qu’elles
ont une multiplicité. Une matrice sera diagonalisable si la dimension du sous-espace
propre associé à chaque valeur propre est égale à la multiplicité de la valeur propre. Par
exemple pour l’exemple 4, A est diagonalisable si la dimension du sous-espace associé
à m-1 est 2 (la dimension d’un sous-espace propre est au moins de 1 et au plus de la
multiplicité, donc pour une valeur propre de multiplicité 1, il n’y a pas à vérifier quoi
que ce soit).

Exemple 5 La matrice suivante est-elle diagonalisable (avec m réel) :

A =





m 1 1
1 m 1
1 1 m





On sait que les valeurs propres sont m− 1,m− 1,m+2. On cherche donc la dimension
du sous-espace associé à m-1. Pour cela, on résoud AX = (m− 1)X ce qui équivaut à
(

A− (m− 1)I3

)

X = 0 :




1 1 1
1 1 1
1 1 1









x
y
z



 = 0

D’où :






x + y + z = 0
x + y + z = 0
x + y + z = 0

x+ y + z = 0 est l’équation d’un plan dans l’espace, i.e. d’un espace de dimension 2 (si
ça ne vous parle pas trop, dites-vous qu’en choisissant 2 des paramètres, le troisième
s’en retrouve fixé, c’est donc un espace de dimension 2). Cette matrice est donc bien
diagonalisable.

Proposition 29 Il a été démontré que certaines matrices sont tout le temps diagona-
lisables. Ainsi, toute matrice symétrique réelle est diagonalisable et ses valeurs propres
sont réelles.

Proposition 30 Pour les réelles et les complexes, ex =
∑∞

k=0
xk

k!
. On définit de cette

façon l’exponentielle d’une matrice. En pratique, il n’est pas trés pratique de calculer
une infinité de puissance d’une matrice et d’en faire la somme, mais pour une matrice
diagonale :

A =











α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn











on a : eA =











eα1 0 . . . 0
0 eα2 . . . 0
...

...
. . .

...
0 0 . . . eαn










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Il est alors trés aisé de calculer l’exponentielle d’une matrice B diagonalisable en une
matrice A : on a B = PAP−1. Et alors eB = PeAP−1.

Exemple 6 Soit a réel, n entier. On veut calculer Mn pour :

M =





−1 a a
1 −1 0
−1 0 −1





On va ici utiliser une autre méthode que celle qu’on vient de présenter. On peut écrire
M = A− I3 et on utilise ensuite la formule du binôme de Newton :

Mn =
n

∑

k=0

Ck
nAk(−1)n−kI n−k

3

= (−1)n

n
∑

k=0

Ck
nAk(−1)k

Cette méthode est intéressante seulement si Ak est nul ou fixe à partir d’une certaine
valeur de k ; ici A3 = 0. On a donc :

Mn = (−1)n

(

I3 − nA +
n(n− 1)

2
A2

)

pour n > 3

On peux vérifier que la formule reste valable pour 0,1,2.

3 Résolutions de systèmes

Nous allons trés brièvement rappeller ici comment résoudre un système d’équations.
On peut toujours faire des combinaisons linéaires des équations pour arriver à un nou-
veau système plus simple. Nous présentons ici la résolution avec l’écriture matricielle
en s’appuyant sur un exemple.

Exemple 7 On cherche à résoudre le système suivant (m nombre complexe donné) :














x + 2y −mz = 1
2x + my − z = 2m2

mx− y = 2m− 1
−x + y + z = 2m

Il y a 4 équations et 3 inconnus : soit le problème n’a pas de solutions, soit une des
équations est combinaison linéaire des autres et elle ne sert donc à rien. Ici en faisant
L1 ← L1 + L3−L2 puis L1 ← L1− (1−m)L4, la première ligne devient 0=0. On reste
donc avec les 3 dernières équations qu’on peut écrire sous forme matricielle.





2 m −1
m −1 0
−1 1 1









x
y
z



 =





2m2

2m− 1
2m





On note A la matrice du système, et Y le second membre. On a donc AX = Y . Un
tel système a une solution si det(A) 6= 0. Ici det(A) = m2 + m + 1, donc det(A) = 0

9



ssi m = e
±2ıπ

3 . Dans ce cas là, le système n’aura pas de solutions. Si on considère
m 6= e

±2ıπ

3 , on a alors :

x =

∣

∣

∣

∣

∣

∣

2m2 m −1
2m− 1 −1 0

2m 1 1

∣

∣

∣

∣

∣

∣

det(A)
, y =

∣

∣

∣

∣

∣

∣

2 2m2 −1
m 2m− 1 0
−1 2m 1

∣

∣

∣

∣

∣

∣

det(A)
, z =

∣

∣

∣

∣

∣

∣

2 m 2m2

m −1 2m− 1
−1 1 −2m

∣

∣

∣

∣

∣

∣

det(A)

i.e. pour trouver le i-ème élément du système, on divise par det(A) le déterminant de
la matrice du système dans laquelle on a remplacé la i-ème colonne par le vecteur Y.
On a donc :

x =
4m2 + 3m− 1

m2 + m + 1

y =
2m3 + 2m2 − 2m + 1

m2 + m + 1

z =
4m2 + 7m− 2

m2 + m + 1

4 Calcul intégral

On rappelle juste deux formules utiles en cas d’intégrales numériques à calculer :

Proposition 31 (Intégration par parties) : soient u,v : [a, b] → C deux fonctions de
classe C1. Alors :

∫ b

a

u(x)v′(x)dx =
[

u · v
]b

a
−

∫ b

a

u′(x)v(x)dx

Exemple 8 On veut calculer :

I =

∫ π/3

0

x cos(x)dx

On pose u = x, v′ = cos x. On a donc u′ = 1 et v = sin x :

I = [x sin x]
π/3
0 −

∫ π/3

0

sin xdx = π

√
3

6
− 1

2

Proposition 32 (Changement de variables) : soit ϕ : [a, b] → R une application de
classe C1 et f : I ⊂ R→ E une application continue telle que ϕ([a, b]) ⊂ I. Alors :

∫ b

a

f
(

ϕ(t)
)

ϕ′(t)dt =

∫ ϕ(b)

ϕ(a)

f(u)du

Exemple 9 On veut calculer :

I =

∫ ln 2

0

√
ex − 1dx

10



On pose : u =
√

ex − 1, d’où x = ln(1 + u2). On a donc dx = 2u
1+u2 du. Quand x = 0,

u = 0 et quand x = ln 2, u = 1. On peut donc écrire :

I =

∫ 1

0

u
2u

1 + u2
du = 2

∫ 1

0

u2

1 + u2
du

= 2

∫ 1

0

du− 2

∫ 1

0

1

1 + u2
du

= 2[u]10 − 2[arctan(u)]10

= 2− π

2

5 Développements limités

Définition 33 Soit f : I → E une application et supposons 0 ∈ I. Si n ∈ N
∗, on dit que

f admet un développement limité d’ordre n au voisinage de 0 s’il existe a0, a1, . . . , an ∈
E tels que, au voisinage de 0 :

f(x) = a0 + a1x + a2x
2 + . . . + anx

n + o(xn)

Pour faire un DL au voisinage de x0, on fait le changement de variable X = x − x0

puis on le fait autour de 0.

Proposition 34 Si f : I → E est une application n fois dérivable en 0, alors f admet
au voisinage de 0 le développement limité d’ordre n suivant :

f(x) = f(0) + f ′(0)x + . . . +
fn(0)

n!
xn + o(xn)

Proposition 35 On rappelle quelques DL usuels au voisinage de 0 :

ex = 1 + x +
x2

2!
+ . . . +

xn

n!
+ o(xn)

sin x = x− x3

3!
+

x5

5!
+ . . . + (−1)p x2p+1

(2p + 1)!
+ o(x2p+2)

cos x = 1− x2

2!
+

x4

4!
+ . . . + (−1)p x2p

(2p)!
+ o(x2p+1)

∀ α ∈ R, (1 + x)α = 1 +
α

1!
x +

α(α− 1)

2!
x2 + . . . +

α(α− 1) . . . (α− n + 1)

n!
+ o(xn)

d′où
1

1 + x
= 1− x + x2 − . . . + (−1)nxn + o(xn)

et
√

1 + x = 1 +
x

2
− 1

2 · 4x2 +
1 · 3

2 · 4 · 6x3 + . . . + (−1)n−1 1 · 3 . . . (2n− 3)

2 · 4 . . . (2n)
+ o(xn)

ln(1 + x) = x− x2

2
+

x3

3
+ . . . + (−1)n−1xn

n
+ o(xn)

tan x = x +
x3

3
+

2

15
x5 +

17

315
x7 + o(x8)
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On peut faire des sommes, produits, quotients, compositions de développements limités :
il faut juste faire attention à les faire au même ordre. Une solution sûre est de les
faire à un ordre supérieur puis de tronquer au dernier moment. Ou de demander à
sa calculatrice de les faire. On peut aussi intégrer et dériver des DL, avec les bonnes
précautions mathématiques (c’est d’ailleurs comme ça que certains des DL rappellés se
retrouvent). Enfin, rappellons que le DL d’une fonction paire ne fera intervenir que des
puissances paires de x et pour une fonction impaire que des puissances impaires de x.

Exemple 10 On cherche à déterminer le développement limité à l’ordre 4 en 0 de
ln(1 + x) · sin(x).
On a : ln(1 + x) = x− x2

2
+ x3

3
− x4

4
+ o(x4) et sin x = x− x3

3!
+ o(x4). D’où :

ln(1 + x) · sin(x) = (x− x2

2
+

x3

3
− x4

4
)(x− x3

3!
) + o(x4)

= (x2 − x3

2
+

x4

3
)− (

x4

6
) + o(x4)

= x2 − x3

2
+

x4

6
+ o(x4)

Exemple 11 On cherche à déterminer le développement limité à l’ordre 4 en 0 de
ln(cos x).
On sait que : cos x = 1 − x2

2!
+ x4

4!
+ o(x4). On pose X = −x2

2!
+ x4

4!
et on sait que

ln(1 + X) = X − X2

2
+ X3

3
− X4

4
+ o(X4). On peut donc écrire :

ln(cos x) = X − X2

2
+

X3

3
− X4

4
+ o(X4)

= (−x2

2!
+

x4

4!
)− (−x2

2!
+ x4

4!
)2

2
+

(−x2

2!
+ x4

4!
)3

3
− (−x2

2!
+ x4

4!
)4

4
+ o(x4)

= −x2

2
+

x4

24
− x4

8
+ o(x4)

= −x2

2
− x4

12
+ o(x4)

6 Trigonométrie

Proposition 36 Pour finir, quelques formules de trigonométrie :

sin(a− b) = sin a cos b− cos a sin b ; sin(a + b) = sin a cos b + cos a sin b

cos(a− b) = cos a cos b + sin a sin b ; cos(a + b) = cos a cos b− sin a sin b

tan(a− b) =
tan a− tan b

1 + tan a tan b
; tan(a + b) =

tan a + tan b

1− tan a tan b

cos p + cos q = 2 cos
p + q

2
cos

p− q

2
; cos p− cos q = −2 sin

p + q

2
sin

p− q

2

sin p + sin q = 2 sin
p + q

2
cos

p− q

2
; sin p− sin q = 2 cos

p + q

2
sin

p− q

2

A partir des 4 premières formules, en faisant les bonnes combinaisons linéaires, on
trouve trés facilement les formules de sin a cos b, cos a cos b et sin a sin b. Avec a = b on
trouve des formules trés pratiques pour les changements de variables dans les intégrales.
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