Nicolas Chéron : nicolas.cheron@ens-lyon.fr Tél : 87 14

Outils mathématiques pour la physique et la chimie

Introduction

Ce document est un rappel de notions de mathématiques “de base” (i.e. niveau
L1/12). Ce n’est en aucun cas un cours complet et rigoureux, mais plutot une liste
d’outils mathématiques dont vous aurez besoin un jour ou l'autre, aussi bien en physique
qu’en chimie. J'y rappelle donc ce que je pense étre utile. Pour réaliser ce support, je
me suis essentiellement servi des deux livres de Xavier Gourdon Algébre et Analyse de
la collection “les maths en téte” chez Ellipses (trouvables a la bibliotheque) ainsi que
de Wikipedia.

1 Généralités d’algebre linéaire

1.1 Espaces vectoriels

Dans la mesure ou nous allons parler d’espaces vectoriels par la suite, nous devons
rappeller certaines définitions déja connues qui permettent d’en parler proprement.

Définition 1 On appelle ‘groupe’ un ensemble G muni d’une loi interne * telle que :
1. La loi * est associative : ¥ (x,y,2) € G, (xxy)*xz=x* (y*2)
2. 1l existe un élement neutre e : Vx € G, txe=e*xxr =1
3. Tout élement a un symétrique : ¥V x € G, dyec G tel querxy=y*xx=e

On démontre assez facilement que 1’élement neutre est unique. Si la loi * est commuta-
tive on parle de groupe commutatif.

Définition 2 On appelle ‘espace vectoriel sur le corps K’ (noté K-ev) un ensemble E
muni d’une loi interne (notée +) et d’une loi externe (notée -) vérifiant :

1. (E, +) est un groupe commutatif
2.V (x,y) € B>, ¥V (\,p) e K2 :
A (zty)=Ax+ Ay
- A4p) = c+p-x
A (pr) =)

-l-x=z

Le corps K est typiquement R ou C pour nous. On constate que A-x = 0 si et seulement
siA=0oux=0.

Définition 3 On appelle les élements de E des vecteurs, et ceux de K des scalaires.



Rien de tel que quelques exemples pour clarifier les idées. Sont des espaces vectoriels :
— R,R% R? et plus généralement K" (les vecteurs sont alors des n-uplets)
- M, ,(K) qui est I'ensemble des matrices p x ¢ a coefficients dans K
— KI[X] qui est I'ensemble des polynomes a coefficients dans K
— L’espace des fonctions et bien d’autres encore . ..

Définition 4 Soit (E, +, -) un K-ev et F' C E. On dit que F est un sous espace
vectoriel (noté sev) de E si (F, +, -) est un K-ev.

En pratique, pour montrer qu'un ensemble est un ev, on montre plutot que c’est un sev
d’un ev connu.

Proposition 5 Soit (E, +, -) un K-ev et F' C E. Alors (F, +, -) est un sev de E si
et seulement si :

| Fto
2.V (z,y) e F>, V(\p) eKE Nx+p-yerl

1.2 Bases d’espaces vectoriels

La notion de base est une notion centrale dans la compréhension de nombreux
processus qu’il faut maitriser. Elle fait appel a deux notions, les familles génératrices et
les familles libres.

Définition 6 Soit (z;);c; une famille de vecteurs d’un K-ev E et soit A C E. On note
Vect(x;)ier U'ensemble des combinaisons linéaires des (x;);er ¢’est-a-dire l’ensemble des
Y ier Nixi pour tout A;. On dit que A est une partie génératrice de E si Vect(a)qea = E.
(Il est immédiat que Vect(x;)icr est un sev de E)

Dit différemment, si A est une partie génératrice de E, on peut écrire n’importe quel
élément de E comme une combinaison linéaire d’élements de A.

Définition 7 Une famille est dite libre (ou non liée) si aucun des vecteurs de la famille
n’est une combinaison linéaire des autres vecteurs, ce qui est équivalent a dire que

Ziel/\ixi =0=V 1, A = 0.
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Ezemple : la famille des (2™),en est libre : on ne peut pas écrire 2° comme combinaison

linéaire des (2")nen, nes-

Définition 8 Une famille libre et génératrice d’un ev E est appelée une base de F.

Proposition 9 Soit E un K-ev admettant une base (e;);er. Alors tout vecteur x de E
s’écrit de maniére unique comme combinaison linéaire des (e;)icr © x = Zig Nix;. Les
(N\i)ier s’appellent les coordonnées de x dans la base (€;)ie;-

Le fait qu’on puisse écrire décomposer tout vecteur de E sur la base vient du caractere
générateur, et le fait que I’écriture soit unique vient du caractere libre.

Définition 10 On dit qu'un K-ev E est de dimension finie sl existe une famille
génératrice finie de E.



Proposition 11 On peut montrer que :
— Tout K-ev de dimension finie admet une base
— De toute famille génératrice de E on peut extraire une base de E
— Toute partie libre peut étre complétée en une base

Il est important de bien garder en téte qu'un méme espace vectoriel peut avoir plusieurs

bases, i.e. qu'un vecteur peut se décomposer de différentes fagons. Regardons I’espace

des polynomes : (1,x, 22 2%, ....2", ...) est une base, mais (1 —x,1 + z, 2% — 23, 2% +

o3P — Pt g2 g2t ) en est une autre.

1.3 Applications linéaires

Définition 12 Soient F et F deux K-ev et f: E — F une application. On dit que f est
linéaire siV (xz,y) € E*, ¥V (\p) € K2, f(Ax + py) = Mf(z) + uf(y). Si E=F on dit
que f est un endomorphisme.

La dérivation ou I'intégration d’une fonction sont par exemple des applications linéaires.

2 Matrice

2.1 Généralités

Définition 13 Soient (p,q) € N*. On appelle matrice de type (p,q) a coefficients dans
K, toute famille (a; ;)1<i<p, 1<j<q @vec ¥V (i,7), a;; € K. On la note :

11 Air2 ... digq

Q21 A22 ... d2g4
A= A

Gp1 Ap2 .. dpg

Les matrices sont particuliecrement utiles pour représenter des applications linéaires.
Soient E et F deux K-ev de dimension finie (dim E = q, dim F =p); soith : E— F
une application linéaire de E dans F. Soient Bg = (ey,...,e,) une base de E et Bp =
(fi,-.., fp) une base de F. Pour tout j (1 < j < q), on peut écrire f(e;) => 0 a; ;- fi
avec a;; € K. On peut regrouper tous les coefficients a; ; dans une matrice A, ou la
j-eéme colonne représente les coordonnées dans Br de 'image du j-éme élément de Bg.

Comme on 'a dit, un ev peut avoir plusieurs bases. Une application linéaire a donc
plusieurs représentations matricielles selon les bases choisies pour E et pour F. Nous
revenons sur ce point un peu plus loin.

Définition 14 Soient (p,q,r) € (N*)? et A = (aij)i<i<p, 1<j<q € Mpg(K), B =
(bij)1<i<e, 1<5<r € Mor(K). On définit la matrice C = (cij)i<i<p, 1<5<r € Mypr(K)
par ¢;; = Y i_; Gig - bpj. La matrice C est appelée produit des matrices A et B et on

note C=ADB.

Dans I'exemple suivant, ¢, ; est égale a ay 1011 + a1 2012 + ... + a1 401, par exemple.



big bz ... b,

’

b2,1 b?,2 b2,r
bg1 bg2 ... by,
11 Air2 ... Q1gq
Q21 A22 ... dzg4
AB =
ap1 dp2 ... Qpg

Le produit AB de deux matrices n’est faisable que si le nombre de lignes de B est égal
au nombre de colonnes de A. Il est donc évident que le produit est associatif mais pas
commutatif. De plus si une matrice est définit par bloc, on peut faire le produit par
bloc. Si M et M’ s’écrivent :

(A B , (A B
M_<C' D),etM—<O, D’)
avec : A, C ar colonnes; B, D a q-r colonnes; A’, B> a r lignes; C’, D’ a g-r lignes.
Alors :
MM — AA"+ BC" AB'+ BD'
-\ CA+DC" CB + DD’
Le produit s’effectue donc comme avec des scalaires en faisant attention a la non-
commutativité du produit de matrices.

Exemple 1

1 3 2 4 0 9 44+3+4 0+214+10 9+4+6+12
56 71172 |=12+6+14 0+42+35 45+ 12+ 42
4 2 5 2 5 6 16+2+10 04+14+25 36+4+30

11 31 27
= | 40 77 99
28 39 70

Définition 15 Soit A = (a;;)1<i<p, 1<j<q € Mpo(K). On appelle matrice transposée
de A (noté'A) la matrice B = (b;;)1<i<q, 1<j<p € Mgp(K) avec a; ; = b; ;.

Si la matrice est carré, 'A s’écrit en faisant le symétrique de A par rapport a la diagonale.

Définition 16 Soit A € M, ,,(K). A est dite inversible s’il existe une matrice B telle
que AB = BA =1, ou I,, est la matrice identité (des 1 sur la diagonale, des 0 partout
ailleurs). On note alors B = A™!.

La matrice A~! représente I'application linéaire réciproque. Par exemple pour Pappli-
cation f : x — +/z, l'application réciproque est f :x — 2.

Définition 17 Soient A, B € M, ,(K). A et B sont dites semblables si elles représentent
le méme endomorphisme dans des bases différentes. On peut alors écrire A = PBP~!
ot P est une matrice inversible (matrice dite de changement de base).
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Des matrices semblables ont de nombreuses propriétés communes puisqu’elles représentent
le méme objet. La matrice de changement de base P s’appelle aussi matrice de passage
de la base initiale a la nouvelle base. On ’écrit en colonne, la i-eme colonne de la ma-
trice de passage étant le i-eme vecteur de la nouvelle base, écrit dans I'ancienne base.
C’est donc aussi la matrice de 'application identité, de I’espace E muni de la nouvelle
base vers E muni de I’ancienne base.

Définition 18 Soit A = (a;;)1<ij<n € Mun(K). On appelle trace de A le scalaire
tr(A) =Y 1, ai; i.e. la somme des élements diagonauz (valable que pour une matrice
carrée).

Proposition 19 On peut montrer que :
- SiA,B € M, ,(K), tr(AB) =tr(BA)
- SiA € Mpn(K), tr(A) =tr(*A)
- SiAetB € M,,(K) sont semblables, alors tr(A)=tr(B)

2.2 Déterminants

Avant de parler de valeurs propres, on va un peu parler de déterminants. En effet,
en pratique, en physique ou en chimie, la recherche de valeurs propres passe souvent par
un calcul de déterminants. Nous ne donnerons pas ici de définition d’un déterminant
puisque ceci ferait intervenir trop de notions supplémentaires. On commence par rap-
peller que :

b
d‘—ad—cb

a
C

Proposition 20 Il est bon de rappeller quelques points sur la manipulation des déterminants
(tout ce qui est dit sur les lignes est valable pour les colonnes puisque det(A) = det(*A)) :

— St deux lignes d’un déterminant sont égales, le déterminant vaut 0

— 51 on inverse deux lignes d’un déterminant, on change son signe

— On ne change pas un déterminant si on ajoute a la ligne i, X fois la ligne j

— St une ligne est combinaison linéaire des autres lignes, le déterminant vaut 0
(conséquences des propriétés précédentes)

— On peut développer un déterminant selon les lignes : pour A = (a;;)1<ij<n €
M, . (K), on définit AP la matrice issue de A ot on a enlevé la p-éme ligne
et la g-eme colonne (c’est donc une matrice (n-1)-(n-1)); on a alors det(A) =
Z;”:l(—l)a “Qpq - det(AP?) ou v est le nombre de permutations de lignes qu’il faut
faire pour amener a, , en premiére ligne : si p est impaire o est pair, si p est pair
a est impair. Un exemple vaut mieur qu’un long discours :

s

“ e
d h
g

—b’d f‘+c
g 1

d e
g h

>N o

&
fl=a
1

On voit ainsi qu’on peut se servir des déterminants pour étudier des systemes ou des en-
sembles de vecteurs. Si on considere n vecteurs dans un espace a n dimensions, et qu’on
veut savoir s’ils peuvent former une base de I'espace, il suffit de calculer le déterminant
de ces n vecteurs i.e. le déterminant de la matrice ou on écrit sur la i-eme colonne le



i-eme vecteur. Si le déterminant est non nul (quelque soit sa valeur), cela signifie que
ces vecteurs ne sont pas liés, ils forment donc une famille libre de méme dimension que
I’espace i.e. une base.

Proposition 21 §i une matrice est diagonale par bloc, alors son déterminant est le
produit des blocs diagonaux. Pour la matrice M suivante :

A B C
M= 0 D FE
0 0 F

ou A, B, C, D, E, F sont des matrices, alors det(M) = det(A) det(D) det(F').
Exemple 2 On cherche a calculer D, avec :

b+a b—a-—c b
D= —c 2a 2a
2c 2c —a+c

Il faut dans ces cas la faire des opérations sur les lignes et les colonnes pour faire
apparaitre des 0, si possible avoir une ligne ou une colonne avec que des 0 sauf a 1
endroit. On peuz alors développer le déterminant par rapport a cette ligne/colonne.
Ici on commence par faire lopération Ly «— Ly + Lo+ Lg. Dot :

a+b+c a+b+c a+b+c
D= —c 2a 2a
2c 2c —a+c

On peut mettre (a + b+ ¢) en facteur, et aprés on fait opération C3 «— C3 — Cy :

1 1 1 1 1 0
D=(a+b+c)| —c 2a 2a =(a+b+c)| —c 2a 0
2c 2¢ —a+c 2c 2¢ —a-—c

On peut donc développer par rapport a la derniére colonne :

1 1

D=0+0+(a+b+c)(—a—c) e g

=—(a+b+c)(a+c)(2a+c)

2.3 Valeurs propres, vecteurs propres

Définition 22 Soit f une application linéaire. On appelle valeur propre un scalaire A
qui vérifie f(z) = Ax avec x # 0; le vecteur x associé s’appelle vecteur propre. En
utilisant [’écriture matricielle cela se note AX = AX. La recherche des valeurs propres
est un probleme centrale en mécanique quantique par exemple.

Définition 23 Diagonaliser une application linéaire consiste a rechercher une base
de [’espace wvectoriel considéré constituée de vecteurs propres pour l’endomorphisme.
L’écriture matricielle de [’endomorphisme dans cette base est alors une matrice diago-
nale avec les valeurs propres sur la diagonale et des 0 partout ailleurs. En effet, on a
alors f(e;) = A\ie; en notant e; le i-eme élement de la base de vecteurs propres et on
aura donc \; sur la diagonale de la matrice, et des 0 sur le reste de la ligne.

Un endomorphisme est dit diagonalisable si et seulement si il existe une base de vecteurs
propres pour cette endomorphisme.



Proposition 24 Soit E un espace vectoriel de dimension finie égale a n € Nx, et f est
un endormorphisme de E d’écriture matricielle A dans une base donnée. On a vu que
si A est une valeur propre de A, AX = AX ; on a donc (A — X,)X = 0 (ou I, est
la matrice identité). Une fagon de trouver les valeurs propres est donc de résoudre le
systéme d’équation : det(A — \I,,) = 0; en développant le déterminant on trouve un
polynome et I’équation s’appelle alors équation caractéristique. Quand on a trouvé une
valeur propre \g, pour trouver le vecteur propre associé il suffit de re-injecter Ao dans
le systeme.

Exemple 3 On cherche les valeurs propres de :

1 2
=3 1)
On cherche en premier lieu [’équation caractéristique :

‘1—1; 2

det(A — zld) = 3 4o

=(1-2)4—-2)—6=2"—-5r+4-6

On cherche donc a résoudre : x> —5x —2 = 0. On trouve 2 solutions qui sont les valeurs
propres et qui sont donc x = (5% /33)/2.

On ne perd jamais rien a vérifier ses calculs. La somme des valeurs propres est égale a
la trace de la matrice et est indépendante de la base. La somme des valeurs propres doit
donc étre égale a tr(A), ce qui est le cas ici et vaut 5. Le produit des valeurs propres est
quant a lui égale au déterminant de la matrice A. Ici ce produit vaut (25 —33)/4 = —2
et est bien égal a 4 — 6.

Exemple 4 On cherche les valeurs propres de A (avec m réel) :

m 1 1
A= 1 m 1
1 1 m

On cherche la encore ’équation caractéristique. On va poser u = m — x pour simplifier
les calculs. On commence par faire C3 «— C3 — Cy :

0 u 1 0
=(1-u)|1l u 1
1 1 -1

det(A — zld) =

—_ =R
i

1 1
u 1 |=
1 w

=

1—u
u—1

Puis on fait Ly < Lo + Ls, et on développe par rapport a la 3éme colonne :

U 1 0
det(A—zld)=(1-u)| 2 u+1 0 |=(1-u)(-1) g ujltl ’:(u—l)(u2+u—2)
1 1 —1

Le polynome s’annule pour 1,1, —2. Les valeurs propres sont donc m —1,m — 1, m + 2.

Proposition 25 On a vu que si A et B sont semblables, A = PBP~'. Si A est dia-
gonalisable, A est semblable avec sa matrice diagonalisé D. On a donc A = PDP™!,
Vu ce qu’on a dit précedemment, la i-éme colonne de la matrice de passage est le i-eme
vecteur propre de A écrit dans la base de départ. On trouvera alors en i-eme place de
la matrice diagonale le vecteur propre associé.



Proposition 26 Si f est un endormorphisme de E et si E est de dimension finie égale
an € Nx, alors f a au plus n valeurs propres. Si f est diagonalisable, f a eractement n
valeurs propres (certaines pouvant étre redondantes) et on a alors det f = [[I_, \i ot
les n \; sont les valeurs propres.

Proposition 27 On appelle sous-espace propre associé a une valeur propre A [’en-
semble des { X} vérifiant AX = \X.

Proposition 28 En dimension n, si une matrice a n valeurs propres différentes, elle est
diagonalisable. Si certaines valeurs propres apparaissent plusieurs fois, on dit qu’elles
ont une multiplicité. Une matrice sera diagonalisable si la dimension du sous-espace
propre associé a chaque valeur propre est égale a la multiplicité de la valeur propre. Par
exemple pour l'exemple 4, A est diagonalisable si la dimension du sous-espace associé
a m-1 est 2 (la dimension d’un sous-espace propre est au moins de 1 et au plus de la
multiplicité, donc pour une valeur propre de multiplicité 1, il n’y a pas a vérifier quoi
que ce soit).

Exemple 5 La matrice suivante est-elle diagonalisable (avec m réel) :

m 1 1
A= 1 m 1
1 1 m

On sait que les valeurs propres sont m— 1, m —1,m~+2. On cherche donc la dimension
du sous-espace associé a m-1. Pour cela, on résoud AX = (m — 1)X ce qui équivaut a

(A—(m—-1)I;)X =0 :

—_ = =
—_ = =

1
1 y | =0
1

r+y+z2=0

r+y+z2=0

r+y+z2=0
r+y+z =0 est l’équation d’un plan dans l’espace, i.e. d’un espace de dimension 2 (si
ca ne vous parle pas trop, dites-vous qu’en choisissant 2 des parametres, le troisieme
s’en retrouve fizé, c’est donc un espace de dimension 2). Cette matrice est donc bien
diagonalisable.

Proposition 29 [l a été démontré que certaines matrices sont tout le temps diagona-
lisables. Ainsi, toute matrice symétrique réelle est diagonalisable et ses valeurs propres
sont réelles.

Proposition 30 Pour les réelles et les complexes, € = Y., % On définit de cette
facon lexponentielle d’une matrice. En pratique, il n’est pas trés pratique de calculer
une infinité de puissance d’une matrice et d’en faire la somme, mais pour une matrice
diagonale :

aq 0 c 0 et 0 R 0

0 « 0 0 e* 0
A= 2 ona:et = )

0 0 Qo 0 O en



1l est alors trés aisé de calculer l’exponentielle d’une matrice B diagonalisable en une
matrice A : on o B= PAP~'. Et alors e® = PeAP~".

Exemple 6 Soit a réel, n entier. On veut calculer M™ pour :

-1 «a a
M = 1 -1 0
-1 0 -1

On wva ici utiliser une autre méthode que celle qu’on vient de présenter. On peut écrire
M = A — I3 et on utilise ensuite la formule du binome de Newton :

M" — ZCsAk(_l)nkaSnfk
k=0

= (=1)" ) CpA (-1

k=0

Cette méthode est intéressante seulement si A* est nul ou five a partir d’une certaine
valeur de k ; ici A3 =0. On a donc :

—1
M" = (-1)" (13 —nA+ %AQ) pour n = 3

On peuz vérifier que la formule reste valable pour 0,1,2.

3 Résolutions de systemes

Nous allons trés brievement rappeller ici comment résoudre un systeme d’équations.
On peut toujours faire des combinaisons linéaires des équations pour arriver a un nou-
veau systeme plus simple. Nous présentons ici la résolution avec 1’écriture matricielle
en s’appuyant sur un exemple.

Exemple 7 On cherche a résoudre le systéme suivant (m nombre complexe donné) :

r4+2y—mz=1
22 +my — 2z = 2m?
mr —y=2m—1
—xr4+y+z=2m

1l y a 4 équations et 3 inconnus : soit le probleme n’a pas de solutions, soit une des
équations est combinaison linéaire des autres et elle ne sert donc a rien. Ici en faisant
Ly« Li+ L3 — Ly puis Ly < Ly — (1 —m) Ly, la premiére ligne devient 0=0. On reste
donc avec les 3 derniéres équations qu’on peut écrire sous forme matricielle.

2 m -1 x 2m?
m —1 0 y | =1 2m—-1
-1 1 1 z 2m

On note A la matrice du systéme, et Y le second membre. On a donc AX =Y. Un
tel systeme a une solution si det(A) # 0. Ici det(A) = m* +m + 1, donc det(A) = 0
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. +2im \ N . . Y
sst m = e 3 . Dans ce cas la, le systeme n’aura pas de solutions. Si on considere
+2vm
m#e 3 , on a alors :

2m? m —1 2 2m? -1 2 m 2m?
2m—1 -1 0 m 2m—1 0 m -1 2m—1
2m 1 1 -1 2m 1 -1 1 —2m
x = ) y = ) Z =
det(A) det(A) det(A)

i.e. pour trouver le i-éme élément du systéeme, on divise par det(A) le déterminant de
la matrice du systéme dans laquelle on a remplacé la i-eme colonne par le vecteur Y.
On a donc :

Am? +3m —1
:L‘:
m2+m-+1
~2mP42m® —2m+ 1
y= m2+m-+1
Z_4m2—|—7m—2
 om24+m+1

4 Calcul intégral

On rappelle juste deux formules utiles en cas d’intégrales numériques a calculer :

Proposition 31 (Intégration par parties) : soient u,v : [a,b] — C deux fonctions de
classe Ct. Alors :

/ab u(z)' (z)de = [u- U]Z - /ab o' (z)v(x)dx

Exemple 8 On veut calculer :
/3
I= / x cos(x)dz
0

On pose u =z, v/ =cosx. On a doncu' =1 et v =sinx :

/8 31
I:[xsinx]g/g—/ sinxdx:ﬂi_——
; 6 2

Proposition 32 (Changement de variables) : soit ¢ : [a,b] — R une application de
classe C* et f : I C R — E une application continue telle que o([a,b]) C I. Alors :

b »(b)
/ F(lt) ¢ (B)dt = / | S

Exemple 9 On veut calculer :

In2

I = ver — 1dx
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On pose : u = ve* — 1, d'ou x = In(1 + u?). On a donc dx = l_ﬁgdu. Quand x = 0,
u=0 et quand x =1In2, u = 1. On peut donc écrire :

1 19
2
I:/u 4 du:2/ Y
o 1+u? o 1+ u?

1 I
= 2/ du — 2/ du
0 0 ]. + U2
2[ulg — 2[arctan(u)]é
2

O

ro| 3

5 Développements limités

Définition 33 Soit f : I — E une application et supposons0 € I. Sin € N*, on dit que
f admet un développement limité d’ordre n au voisinage de 0 s’il existe ag, a1, ..., a, €
E tels que, au voisinage de 0 :

f(z) = ap + a1x + aox® + ... + a 2™ + o(z")

Pour faire un DL au voisinage de xqo, on fait le changement de variable X = x — xg
puis on le fait autour de 0.

Proposition 34 Si f : I — E est une application n fois dérivable en 0, alors f admet
au voisinage de 0 le développement limité d’ordre n suivant :
"0
f(x)=f0)+ f(0)x+...+ fn—(,) "+ o(a™)

Proposition 35 On rappelle quelques DL usuels au voisinage de 0 :

T _ 1 Z.Z " n
e’ = +w+§+...+m+0(x)
P 20+
: o = _1\p 2p+2
sinz =x 3!+5!+...—|—( 1) <2p+1)!+0(x )
2 220
1 1= 2p+1
cosr =1 2!+4!+...—|—( 1) (2p)!+o(x )
—1 —1)...(a«— 1
\V/(IG]R, (1+$)a:1+%$+%$2++a(a ) n'(Oé nt )—{—O(IEn)
X ! ! !
d'od1+x:1—x+x2—...+(—1)"x”+0(x”)
x 1 : ,1-3...(2n-3)
t V1 =14+=— 2 3 . 1t n
AVite=lts o r ot Tt T S Gy e
R "
In(1 —r— "+ (=) "
n(l+z)==z 5Tt +(-1) n—l—o(m)

17
tanz =2+ — + —a® + ——a7 + o(z®)
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On peut faire des sommes, produits, quotients, compositions de développements limités :
il faut juste faire attention a les faire au méme ordre. Une solution stre est de les
faire a un ordre supérieur puis de tronquer au dernier moment. Ou de demander a
sa calculatrice de les faire. On peut aussi intégrer et dériver des DL, avec les bonnes
précautions mathématiques (c’est d’ailleurs comme ¢a que certains des DL rappellés se
retrouvent). Enfin, rappellons que le DL d’une fonction paire ne fera intervenir que des
puissances paires de x et pour une fonction impaire que des puissances impaires de x.

Exemple 10 On cherche a déterminer le développement limité o ['ordre 4 en 0 de
In(1 + z) - sin(x).
4 \

Ona.‘ln(l%—x):x—%%—%—%%—o(ﬁ) 6tsinx:x—g—?+o(x4). D’ou :

, 2 xd a2t x3 A
In(1 + x) - sin(x) = (x—5+§—z)(x—§)+o(x )
3 4 4
(2t B 4
=@ =T ) (D) ol
3 4
::1:2—%+%—|—0(x4)
Exemple 11 On cherche a déterminer le développement limité a ordre 4 en 0 de
In(cos x).
On sait que : cosx = 1 — xz—? + ﬁ—? + o(z*). On pose X = —% + ﬁ—? et on sait que

In(1+X)=X— X; + XTJ — Xf + o(X*). On peut donc écrire :

ln(cosx):X—7 ?_T+O(X4)
_ o2 Care)t Cure) Cara)t
g' i! , 2 3 4
=~ 5 - o ola?)
——%2—%+0($4)

6 Trigonométrie

Proposition 36 Pour finir, quelques formules de trigonométrie :

sin(a — b) =sinacosb — cosasinb ; sin(a+ b) = sinacosb+ cosasinb
cos(a — b) = cosacosb+sinasinb ; cos(a+ b) =cosacosb—sinasinb
tana — tanb tana + tanb
tan(a —b) = ———— ; tan(a+b) = —
( ) 14 tanatanbd ( ) 1 —tanatanb
_ p+q  p—q . .ptq. p—q
cosp + cosq = 2cos 5 cos 5 ;  COSp—cosq = —2sin 5 sin 5
. . .p+q _p—q . . ptq . p—yq
sinp + singq = 2sin 5 COS T ; sinp —sing = 2cos 5 sl

A partir des 4 premieres formules, en faisant les bonnes combinaisons linéaires, on
trouve trés facilement les formules de sinacosb, cosacosb et sinasinb. Avec a = b on
trouve des formules trés pratiques pour les changements de variables dans les intégrales.
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