UMR 8640 : Physico-Chimie Théorique

Printer-friendly version

(January 2017)

New avenues for the large-scale harvesting of blue energy

Nature Reviews Chemistry 1, Article number: 0091 (2017)

 

Salinity gradients have been identified as promising clean, renewable and non intermittent sources of energy — so-called blue energy. However, the low efficiency of current harvesting technologies is a major limitation for large-scale viability and is mostly due to the low performances of the membrane processes currently in use. Advances in materials fabrication with dedicated chemical properties can resolve this bottleneck and lead to a new class of membranes for blue-energy conversion. In this Perspective, we briefly present current technologies for the conversion of blue energy, describe their performances and note their limitations. We then discuss new avenues for the development of a new class of membranes, combining considerations in nanoscale fluid dynamics and surface chemistry. Finally, we discuss how new functionalities originating from the exotic behaviour of fluids in the nanoscale regime can further boost energy conversion, making osmotic energy a tangible, clean alternative.

Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices

Chem. Soc. Rev., 8, 2017

 

We review the high pressure forced intrusion studies of water in hydrophobic microporous materials such as zeolites and MOFs, a field of research that has emerged some 15 years ago and is now very active. Many of these studies are aimed at investigating the possibility of using these systems as energy storage devices. A series of all-silica zeolites (zeosil) frameworks were found suitable for reversible energy storage because of their stability with respect to hydrolysis after several water intrusion–extrusion cycles. Several microporous hydrophobic zeolite imidazolate frameworks (ZIFs) also happen to be quite stable and resistant towards hydrolysis and thus seem very promising for energy storage applications. Replacing pure water by electrolyte aqueous solutions enables to increase the stored energy by a factor close to 3, on account of the high pressure shift of the intrusion transition. In addition to the fact that aqueous solutions and microporous silica materials are environmental friendly, these systems are thus becoming increasingly interesting for the design of new energy storage devices.

 

On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

PHYSICAL REVIEW X 25 août 2017

Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via positiondependent corrections to the bare nuclear masses. 

L'eau, une histoire trouble - Podcast France Culture

L’eau est un des éléments qui nous est le plus familier, mais recèle encore bien des mystères. Comment se sont construites les théories physiques et chimiques sur l’eau ? Quelles sont nos connaissances actuelles sur cette substance ?

Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene

ACS Nano, Decembre 2016

 

 

Based on a low temperature scanning tunneling microscopy study, we present a direct visualization of a cycloaddition reaction performed for some specific fluorinated maleimide molecules deposited on graphene. Up to now it was widely admitted that such cycloaddition reaction can not happen without pre-existing defects. However, our study shows that the cycloaddition reaction can be carried out on a defect-free basal graphene plane at room temperature. In the course of covalently grafting the molecules to graphene, the sp2 conjugation of carbon atoms was broken and local sp3 bonds were created. The grafted molecules perturbed the graphene lattice, generating a standing-wave pattern with an anisotropy which was attributed to a (1,2) cycloaddition, as revealed by T-matrix approximation calculations. DFT calculations showed that while both (1,4) and (1,2) cycloaddition were possible on free standing graphene, only the (1,2) cycloaddition could be obtained for graphene on SiC(0001). Globally averaging spectroscopic techniques, XPS and ARPES, were used to determine the modification in the elemental composition of the samples induced by the reaction, indicating an opening of an electronic gap in graphene.