Sustainable POrous composites for an Efficient CO2 Revalorization (PORECO2)

Printer-friendly version
Type d'offre: 
Thèse de Doctorat
Adresse mail du contact: 

 

 

Because of the high abundance of carbon dioxide (CO2) in our atmosphere, efforts are highly devoted to mitigate its novice effect on our planet manifesting mainly by the global warming. If the capture and storage of CO2 has emerged as an effective solution to reduce its impact, the use of this massive reservoir of CO2 as free source of sustainable feedstock has also attracted significant attention. This project aims at the rational design and elaboration of catalytically active transition metal nanoparticles embedded into porous sustainable Metal-Organic Frameworks (MOFs) allowing the hydrogenation of CO2 into alcohols with higher performances. It will rely first on the proven performances of existing catalytic systems, such as the well-known non porous metal/metal oxide composites, and the unparalleled versatility and controlled modularity of MOFs in terms of chemical nature as well as size and type of porosity. The confinement of metal-NPs on predesigned anchoring sites and cavities will prevent from the aggregation of metal particles that suffers from the actual classical systems and leading to undesired secondary products. Besides, the porous structure of MOFs will permit the pre-concentration of CO2 close to the active sites which may lead to lowering the energetic costs by reducing the actual required high pressure for the reaction. The main objective will be the conversion of CO2 into methanol and if possible into ethanol and/or hydrocarbons containing two (or more) carbon atoms. First catalytic tests will be carried out within the IMAP laboratory while the most promising solids will be later thoroughly studied in collaboration with leading groups in catalysis.

 

Pour en savoir plus et postuler : Sustainable POrous composites for an Efficient CO2 Revalorization (PORECO2)

 

 

Unité de rattachement: 
FRE IMAP 2000