UMR 8640 : Biophysical chemistry

Printer-friendly version

Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations

Nature Communications 8, 969 (2017)


We present speed out-of-phase imaging after optical modulation (OPIOM), which exploits reversible photoswitchable fluorophores as fluorescent labels and combines optimized periodic illumination with phase-sensitive detection to specifically retrieve the label signal. Speed OPIOM can extract the fluorescence emission from a targeted label in the presence of spectrally interfering fluorophores and autofluorescence. Up to four fluorescent proteins exhibiting a similar green fluorescence have been distinguished in cells either sequentially or in parallel. Speed OPIOM is compatible with imaging biological processes in real time in live cells. Finally speed OPIOM is not limited to microscopy but is relevant for remote imaging as well, in particular, under ambient light. Thus, speed OPIOM has proved to enable fast and quantitative live microscopic and remote-multiplexed fluorescence imaging of biological samples while filtering out noise, interfering fluorophores, as well as ambient light.


Programmed Self-Assembly of a Biochemical and Magnetic Scaffold to Trigger and Manipulate Microtubule Structures

Scientific REPOrtS | 7: 11344 | 2017


Artificial bio-based scaffolds offer broad applications in bioinspired chemistry, nanomedicine, and material science. One current challenge is to understand how the programmed self-assembly of biomolecules at the nanometre level can dictate the emergence of new functional properties at the mesoscopic scale. Here we report a general approach to design genetically encoded protein-based scaffolds with modular biochemical and magnetic functions. By combining chemically induced dimerization strategies and biomineralisation, we engineered ferritin nanocages to nucleate and manipulate microtubule structures upon magnetic actuation. Triggering the self-assembly of engineered ferritins into micrometric scaffolds mimics the function of centrosomes, the microtubule organizing centres of cells, and provides unique magnetic and self-organizing properties. We anticipate that our approach could be transposed to control various biological processes and extend to broader applications in biotechnology or material chemistry.

Dynamic multicolor protein labeling in living cells

Chem. Sci.2017, Advance Article 


Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST, hereafter called FAST) is a 14-kDa protein tag giving a bright green-yellow fluorescent complex upon interaction with the fluorogenic dye 4-hydroxy-3-methylbenzylidene rhodanine (HMBR). Here, we report a collection of fluorogens enabling to tune the fluorescence color of FAST from greenyellow to orange and red. Beyond allowing multicolor imaging of FAST-tagged proteins in live cells, these fluorogens enable dynamic color switching because of FAST’s reversible labeling. This unprecedented behavior allows selective detection of FAST-tagged proteins in cells expressing both green and red fluorescent species through two-color crosscorrelation, opening exciting prospects to overcome spectral crowding and push the frontiers of multiplexed imaging.

Interview Arnaud GAUTIER, a chemical biologist !

Arnaud GAUTIER, Maître de Conférence au sein du Département de Chimie de l'École normale supérieure est lauréat du financement ERC Consolidator Grant 2016 et Médaille de Bronze du CNRS.


Visionnez son interview où il nous explique ce qu'est la chémobiologie et nous détaille ses projets à venir !

Temperature-Switchable Control of Ligand Display on Adlayers of Mixed Poly(lysine)‑g‑(PEO) and Poly(lysine)‑g‑(ligand-modified poly‑N‑isopropylacrylamide)

Biomacromolecules2016 May 9;17(5):1727-36


Adlayers of poly(lysine)-g -PEG comblike copolymer are extensively used to prepare cell-repellant and proteinrepellent surfaces by a straightforward coulomb-driven adsorption that is compatible with diverse substrates (glass, Petri dish, etc.). To endow surfaces with functional properties, namely, controlled ligand-protein binding, comblike poly(lysine) derivatives were used to deposit temperature-responsive poly(NIPAM) macrografts mixed with PEG ones on glass surfaces. Simple surface immersion in mixed solutions of biotin-modifi ed poly(lysine)-g -poly(N -isopropylacrylamide) and poly(lysine)-g -poly(ethylene oxide) yielded robust adlayers whose composition refl ected the ratio between the two polymers in solution. We show by fluorescence imaging, and comparison with repellent 100% PEGylated patterns, that specifi c binding of model avidin/particle conjugates (diameters of ca. 10 or 200 nm) was controlled by temperature switch. The biotin ligand was displayed and accessible at low T , or hidden at T  > LCST. Topography and mechanical mapping measurements by AFM confi rmed the swelling/collapse status of PNIPAM macrografts in the adlayer at low/high T , respectively. Temperature-responsive comblike PLL derivative that can spontaneously cover anionic interfaces is a promising platform enabling good control on the deposition and accessibility of biofunctional groups on various solid surfaces